import streamlit as st import numpy as np import matplotlib.pyplot as plt import random from scipy.stats import entropy as scipy_entropy import time # --- ПАРАМЕТРЫ --- seqlen = 60 min_run, max_run = 1, 2 ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0} bases = ['A', 'C', 'G', 'T'] population_size = 10 # размер популяции "организмов" survival_rate = 0.5 # процент выживших для следующего поколения # --- ФУНКЦИИ --- def bio_mutate(seq): r = random.random() if r < 0.70: idx = random.randint(0, len(seq)-1) orig = seq[idx] prob = random.random() if orig in 'AG': newbase = 'C' if prob < 0.65 else random.choice(['T', 'C']) elif orig in 'CT': newbase = 'G' if prob < 0.65 else random.choice(['A', 'G']) else: newbase = random.choice([b for b in bases if b != orig]) seq = seq[:idx] + newbase + seq[idx+1:] elif r < 0.80: idx = random.randint(0, len(seq)-1) ins = ''.join(random.choices(bases, k=random.randint(1, 3))) seq = seq[:idx] + ins + seq[idx:] if len(seq) > seqlen: seq = seq[:seqlen] elif r < 0.90: if len(seq) > 4: idx = random.randint(0, len(seq)-2) dell = random.randint(1, min(3, len(seq)-idx)) seq = seq[:idx] + seq[idx+dell:] else: if len(seq) > 10: start = random.randint(0, len(seq)-6) end = start + random.randint(3,6) subseq = seq[start:end][::-1] seq = seq[:start] + subseq + seq[end:] while len(seq) < seqlen: seq += random.choice(bases) return seq[:seqlen] def compute_autocorr(profile): profile = profile - np.mean(profile) result = np.correlate(profile, profile, mode='full') result = result[result.size // 2:] norm = np.max(result) if np.max(result) != 0 else 1 return result[:10]/norm def compute_entropy(profile): vals, counts = np.unique(profile, return_counts=True) p = counts / counts.sum() return scipy_entropy(p, base=2) def genetic_algorithm(population): """Эволюционный алгоритм для отбора и мутации.""" # Отбор лучших организмов population.sort(key=lambda x: x[1]) # сортируем по фитнесу (энтропия) survivors = population[:int(population_size * survival_rate)] # Кроссовер: создаем новых организмов на основе выживших offspring = [] for i in range(len(survivors) // 2): parent1, parent2 = survivors[i], survivors[-i-1] crossover_point = random.randint(0, seqlen) child1 = parent1[0][:crossover_point] + parent2[0][crossover_point:] child2 = parent2[0][:crossover_point] + parent1[0][crossover_point:] offspring.append((bio_mutate(child1), 0)) offspring.append((bio_mutate(child2), 0)) # Возвращаем новое поколение return survivors + offspring # --- UI --- st.title("🔴 Живой эфир мутаций ДНК") start = st.button("▶️ Старт эфира") stop = st.checkbox("⏹️ Остановить") plot_placeholder = st.empty() if start: # Начальная популяция population = [(random.choices(bases, k=seqlen), 0) for _ in range(population_size)] stat_bist_counts = [] stat_entropy = [] step = 0 while True: if stop: st.warning("⏹️ Эфир остановлен пользователем.") break # Мутация и оценка каждого организма в популяции for i in range(population_size): seq, _ = population[i] torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq]) ent = compute_entropy(torsion_profile) population[i] = (seq, ent) # Применяем эволюционный алгоритм population = genetic_algorithm(population) # Статистика для отображения stat_bist_counts.append(len(population)) ent = np.mean([ind[1] for ind in population]) # средняя энтропия stat_entropy.append(ent) acorr = compute_autocorr(np.array([ANGLE_MAP.get(nt, 0.0) for nt in population[0][0]])) fig, axs = plt.subplots(3, 1, figsize=(10, 8)) plt.subplots_adjust(hspace=0.45) axs[0].plot([ANGLE_MAP.get(nt, 0.0) for nt in population[0][0]], color='royalblue') axs[0].set_ylim(-200, 200) axs[0].set_title(f"Шаг {step}: {population[0][0]}") axs[0].set_ylabel("Торсионный угол") axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4) axs[1].set_ylabel("Биомашины") axs[1].set_title("Количество машин") axs[2].bar(np.arange(6), acorr[:6], color='teal') axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}") axs[2].set_xlabel("Лаг") plot_placeholder.pyplot(fig) plt.close(fig) step += 1 time.sleep(0.3)