File size: 5,140 Bytes
161a31c
3ffebe8
599d710
161a31c
aaacbbe
161a31c
 
8d1b425
161a31c
 
 
 
aaacbbe
 
 
 
 
8d1b425
aaacbbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d1b425
aaacbbe
 
 
 
 
 
 
 
161a31c
8d1b425
161a31c
 
 
 
 
 
 
 
 
 
 
 
 
 
aaacbbe
 
 
 
 
 
 
 
 
 
 
 
161a31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaacbbe
 
161a31c
 
 
 
 
 
 
 
 
8d1b425
161a31c
 
 
8d1b425
cab60db
8d1b425
aaacbbe
161a31c
aaacbbe
8d1b425
aaacbbe
 
161a31c
aaacbbe
 
161a31c
8d1b425
aaacbbe
 
 
 
8d1b425
 
 
aaacbbe
 
161a31c
 
aaacbbe
161a31c
aaacbbe
161a31c
aaacbbe
 
161a31c
aaacbbe
8d1b425
411f3df
8d1b425
aaacbbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
import time
from scipy.stats import entropy as scipy_entropy

# Константы
seqlen = 60
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
lags_shown = 6

st.set_page_config(layout="wide")
st.title("🌌 Визуализация торсионных биомашин")

# UI
col1, col2, col3 = st.columns([1,1,2])
with col1:
    if 'running' not in st.session_state:
        st.session_state.running = False
    if st.button("▶️ Старт / ⏸ Стоп"):
        st.session_state.running = not st.session_state.running

with col2:
    if st.button("🔄 Сброс"):
        st.session_state.running = False
        st.session_state.step = 0
        st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
        st.session_state.stat_bist_counts = []
        st.session_state.stat_entropy = []
        st.session_state.stat_autocorr = []

with col3:
    speed = st.slider("⏱ Скорость обновления (мс)", 10, 1000, 200, step=10)

# Init
if 'seq' not in st.session_state:
    st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
if 'step' not in st.session_state:
    st.session_state.step = 0
if 'stat_bist_counts' not in st.session_state:
    st.session_state.stat_bist_counts = []
    st.session_state.stat_entropy = []
    st.session_state.stat_autocorr = []

# Функции
def find_local_min_runs(profile, min_run=1, max_run=2):
    result = []
    N = len(profile)
    i = 0
    while i < N:
        run_val = profile[i]
        run_length = 1
        while i + run_length < N and profile[i + run_length] == run_val:
            run_length += 1
        if min_run <= run_length <= max_run:
            result.append((i, i + run_length - 1, run_val))
        i += run_length
    return result

def compute_autocorr(profile):
    profile = profile - np.mean(profile)
    result = np.correlate(profile, profile, mode='full')
    result = result[result.size // 2:]
    norm = np.max(result) if np.max(result) != 0 else 1
    return result[:10] / norm

def compute_entropy(profile):
    vals, counts = np.unique(profile, return_counts=True)
    p = counts / counts.sum()
    return scipy_entropy(p, base=2)

def bio_mutate(seq):
    r = random.random()
    if r < 0.70:
        idx = random.randint(0, len(seq)-1)
        orig = seq[idx]
        prob = random.random()
        if orig in 'AG':
            newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
        elif orig in 'CT':
            newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
        else:
            newbase = random.choice([b for b in bases if b != orig])
        seq = seq[:idx] + newbase + seq[idx+1:]
    elif r < 0.80:
        idx = random.randint(0, len(seq)-1)
        ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
        seq = seq[:idx] + ins + seq[idx:]
        if len(seq) > seqlen:
            seq = seq[:seqlen]
    elif r < 0.90:
        if len(seq) > 4:
            idx = random.randint(0, len(seq)-2)
            dell = random.randint(1, min(3, len(seq)-idx))
            seq = seq[:idx] + seq[idx+dell:]
    else:
        if len(seq) > 10:
            start = random.randint(0, len(seq)-6)
            end = start + random.randint(3,6)
            subseq = seq[start:end][::-1]
            seq = seq[:start] + subseq + seq[end:]
    while len(seq) < seqlen:
        seq += random.choice(bases)
    return seq[:seqlen]

# Визуализация
plot_area = st.empty()

while st.session_state.running:
    # Мутация
    st.session_state.seq = bio_mutate(st.session_state.seq)
    torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq])
    runs = find_local_min_runs(torsion_profile, min_run, max_run)
    ent = compute_entropy(torsion_profile)
    acorr = compute_autocorr(torsion_profile)

    # Сохраняем последние 50
    st.session_state.stat_bist_counts = st.session_state.stat_bist_counts[-50:] + [len(runs)]
    st.session_state.stat_entropy = st.session_state.stat_entropy[-50:] + [ent]
    st.session_state.stat_autocorr = st.session_state.stat_autocorr[-50:] + [acorr]

    # График
    fig, axs = plt.subplots(3, 1, figsize=(10, 8))
    plt.subplots_adjust(hspace=0.5)

    axs[0].plot(torsion_profile, color='royalblue')
    for start, end, val in runs:
        axs[0].axvspan(start, end, color="red", alpha=0.3)
        axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=4)
    axs[0].set_ylim(-200, 200)
    axs[0].set_title(f"Шаг {st.session_state.step}: {st.session_state.seq}\nМашин: {len(runs)}, Энтропия: {ent:.2f}")

    axs[1].plot(st.session_state.stat_bist_counts, '-o', color='crimson', markersize=4)
    axs[1].set_title("Число 'биомашин'")

    axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal')
    axs[2].set_title("Автокорреляция")

    plot_area.pyplot(fig)
    st.session_state.step += 1
    time.sleep(speed / 1000.0)