File size: 5,140 Bytes
161a31c 3ffebe8 599d710 161a31c aaacbbe 161a31c 8d1b425 161a31c aaacbbe 8d1b425 aaacbbe 8d1b425 aaacbbe 161a31c 8d1b425 161a31c aaacbbe 161a31c aaacbbe 161a31c 8d1b425 161a31c 8d1b425 cab60db 8d1b425 aaacbbe 161a31c aaacbbe 8d1b425 aaacbbe 161a31c aaacbbe 161a31c 8d1b425 aaacbbe 8d1b425 aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 161a31c aaacbbe 8d1b425 411f3df 8d1b425 aaacbbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
import time
from scipy.stats import entropy as scipy_entropy
# Константы
seqlen = 60
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
lags_shown = 6
st.set_page_config(layout="wide")
st.title("🌌 Визуализация торсионных биомашин")
# UI
col1, col2, col3 = st.columns([1,1,2])
with col1:
if 'running' not in st.session_state:
st.session_state.running = False
if st.button("▶️ Старт / ⏸ Стоп"):
st.session_state.running = not st.session_state.running
with col2:
if st.button("🔄 Сброс"):
st.session_state.running = False
st.session_state.step = 0
st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
st.session_state.stat_bist_counts = []
st.session_state.stat_entropy = []
st.session_state.stat_autocorr = []
with col3:
speed = st.slider("⏱ Скорость обновления (мс)", 10, 1000, 200, step=10)
# Init
if 'seq' not in st.session_state:
st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
if 'step' not in st.session_state:
st.session_state.step = 0
if 'stat_bist_counts' not in st.session_state:
st.session_state.stat_bist_counts = []
st.session_state.stat_entropy = []
st.session_state.stat_autocorr = []
# Функции
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result) != 0 else 1
return result[:10] / norm
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
def bio_mutate(seq):
r = random.random()
if r < 0.70:
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80:
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90:
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else:
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end][::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
return seq[:seqlen]
# Визуализация
plot_area = st.empty()
while st.session_state.running:
# Мутация
st.session_state.seq = bio_mutate(st.session_state.seq)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
ent = compute_entropy(torsion_profile)
acorr = compute_autocorr(torsion_profile)
# Сохраняем последние 50
st.session_state.stat_bist_counts = st.session_state.stat_bist_counts[-50:] + [len(runs)]
st.session_state.stat_entropy = st.session_state.stat_entropy[-50:] + [ent]
st.session_state.stat_autocorr = st.session_state.stat_autocorr[-50:] + [acorr]
# График
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
plt.subplots_adjust(hspace=0.5)
axs[0].plot(torsion_profile, color='royalblue')
for start, end, val in runs:
axs[0].axvspan(start, end, color="red", alpha=0.3)
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=4)
axs[0].set_ylim(-200, 200)
axs[0].set_title(f"Шаг {st.session_state.step}: {st.session_state.seq}\nМашин: {len(runs)}, Энтропия: {ent:.2f}")
axs[1].plot(st.session_state.stat_bist_counts, '-o', color='crimson', markersize=4)
axs[1].set_title("Число 'биомашин'")
axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal')
axs[2].set_title("Автокорреляция")
plot_area.pyplot(fig)
st.session_state.step += 1
time.sleep(speed / 1000.0)
|