File size: 4,157 Bytes
cab60db
3ffebe8
599d710
3ffebe8
 
ce76895
cab60db
599d710
 
396e0c2
3ffebe8
ce76895
3ffebe8
 
 
cab60db
599d710
3ffebe8
 
 
 
 
 
 
 
 
 
 
 
 
cab60db
3ffebe8
 
f1e60b9
3ffebe8
 
 
 
 
 
 
 
 
 
f1e60b9
3ffebe8
 
 
396e0c2
 
f1e60b9
3ffebe8
 
 
 
f1e60b9
3ffebe8
 
 
599d710
ce76895
3ffebe8
 
599d710
cab60db
396e0c2
 
 
 
30998ff
396e0c2
cab60db
ce76895
 
 
 
 
599d710
 
 
ce76895
599d710
 
 
3ffebe8
 
 
 
ce76895
0bc0cd3
 
 
 
 
 
 
 
 
f1e60b9
599d710
 
 
 
 
 
 
 
 
396e0c2
599d710
 
 
30998ff
599d710
 
 
30998ff
599d710
 
30998ff
599d710
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time

st.set_page_config(layout="wide")

# --- НАСТРОЙКИ ---
seqlen = 60
steps = 120
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']

# --- БИО-ФУНКЦИИ ---
def find_local_min_runs(profile, min_run=1, max_run=2):
    result = []
    N = len(profile)
    i = 0
    while i < N:
        run_val = profile[i]
        run_length = 1
        while i + run_length < N and profile[i + run_length] == run_val:
            run_length += 1
        if min_run <= run_length <= max_run:
            result.append((i, i + run_length - 1, run_val))
        i += run_length
    return result

def bio_mutate(seq):
    r = random.random()
    if r < 0.70:
        idx = random.randint(0, len(seq)-1)
        orig = seq[idx]
        prob = random.random()
        if orig in 'AG':
            newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
        elif orig in 'CT':
            newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
        else:
            newbase = random.choice([b for b in bases if b != orig])
        seq = seq[:idx] + newbase + seq[idx+1:]
    elif r < 0.80:
        idx = random.randint(0, len(seq)-1)
        ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
        seq = seq[:idx] + ins + seq[idx:]
        if len(seq) > seqlen:
            seq = seq[:seqlen]
    elif r < 0.90:
        if len(seq) > 4:
            idx = random.randint(0, len(seq)-2)
            dell = random.randint(1, min(3, len(seq)-idx))
            seq = seq[:idx] + seq[idx+dell:]
    else:
        if len(seq) > 10:
            start = random.randint(0, len(seq)-6)
            end = start + random.randint(3,6)
            subseq = seq[start:end][::-1]
            seq = seq[:start] + subseq + seq[end:]
    while len(seq) < seqlen:
        seq += random.choice(bases)
    return seq[:seqlen]

def compute_autocorr(profile):
    profile = profile - np.mean(profile)
    result = np.correlate(profile, profile, mode='full')
    result = result[result.size // 2:]
    norm = np.max(result) if np.max(result) != 0 else 1
    return result[:10]/norm

def compute_entropy(profile):
    vals, counts = np.unique(profile, return_counts=True)
    p = counts / counts.sum()
    return scipy_entropy(p, base=2)

# --- ИНТЕРФЕЙС ---
st.title("🧬 Эфир: Живой поток мутаций ДНК")
st.markdown("Анализ биологических свойств последовательности в реальном времени.")

plot_placeholder = st.empty()

if st.button("▶️ Начать эфир"):
    seq = ''.join(random.choices(bases, k=seqlen))
    stat_bist_counts = []
    stat_entropy = []
    stat_autocorr = []

    for step in range(steps):
        if step != 0:
            seq = bio_mutate(seq)
        torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
        runs = find_local_min_runs(torsion_profile, min_run, max_run)
        stat_bist_counts.append(len(runs))
        ent = compute_entropy(torsion_profile)
        stat_entropy.append(ent)
        acorr = compute_autocorr(torsion_profile)

        fig, axs = plt.subplots(3, 1, figsize=(10, 8))
        plt.subplots_adjust(hspace=0.45)

        axs[0].plot(torsion_profile, color='royalblue')
        for start, end, val in runs:
            axs[0].axvspan(start, end, color="red", alpha=0.3)
        axs[0].set_ylim(-200, 200)
        axs[0].set_title(f"Шаг {step}: {seq}")
        axs[0].set_ylabel("Торсионный угол")

        axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
        axs[1].set_ylabel("Биомашины")
        axs[1].set_title("Количество машин")

        axs[2].bar(np.arange(6), acorr[:6], color='teal')
        axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
        axs[2].set_xlabel("Лаг")

        plot_placeholder.pyplot(fig)
        plt.close(fig)

        time.sleep(0.3)