File size: 6,528 Bytes
3ffebe8 599d710 5628a71 161a31c 5628a71 161a31c 5628a71 161a31c aaacbbe 161a31c 5628a71 161a31c 5628a71 161a31c 5628a71 161a31c aaacbbe 5628a71 161a31c 5628a71 161a31c 5628a71 161a31c 5628a71 161a31c 5628a71 161a31c 5628a71 aaacbbe 5628a71 aaacbbe 5628a71 161a31c 5628a71 161a31c 5628a71 161a31c 5628a71 411f3df 5628a71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import random
from scipy.stats import entropy as scipy_entropy
# --- НАСТРОЙКИ ---
seqlen = 60
steps = 120
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
# --- Более биологичные мутации ---
def bio_mutate(seq):
r = random.random()
if r < 0.70: # Точечная мутация
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80: # Инсерция короткого блока
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90: # Делеция
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else: # Блочная перестановка (инверсия)
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end]
subseq = subseq[::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
if len(seq) > seqlen:
seq = seq[:seqlen]
return seq
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result)!=0 else 1
return result[:10]/norm # только лаги 0..9
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
# --- Дополнительный анализ стромбистов ---
def analyze_strombists(runs, seqlen):
counts = len(runs)
lengths = [end - start + 1 for start, end, _ in runs]
angle_freq = {}
heatmap_row = np.zeros(seqlen)
for start, end, val in runs:
for pos in range(start, end + 1):
heatmap_row[pos] = 1
angle_freq[val] = angle_freq.get(val, 0) + 1
return counts, lengths, angle_freq, heatmap_row
# --- Начальная цепь ---
seq = ''.join(random.choices(bases, k=seqlen))
stat_bist_counts = []
stat_entropy = []
stat_autocorr = []
stat_strombists = []
fig, axs = plt.subplots(4, 1, figsize=(10, 10))
plt.subplots_adjust(hspace=0.45)
lags_shown = 6
def draw_world(seq, axs, step, cnt_hist, ent_hist, ac_hist, st_hist):
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
st_count, st_lengths, st_angle_freq, st_heatmap_row = analyze_strombists(runs, seqlen)
axs[0].cla()
axs[1].cla()
axs[2].cla()
axs[3].cla()
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
for start, end, val in runs:
axs[0].axvspan(start, end, color="red", alpha=0.3)
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
axs[0].set_ylim(-200, 200)
axs[0].set_xlabel("Позиция")
axs[0].set_ylabel("Торсионный угол (град.)")
axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {st_count}, энтропия: {ent_hist[-1]:.2f}")
axs[0].legend()
# История динамики "машин"
axs[1].plot(cnt_hist, '-o', color='crimson', markersize=4)
axs[1].set_xlabel("Шаг")
axs[1].set_ylabel("Число машин")
axs[1].set_ylim(0, max(10, max(cnt_hist)+1))
axs[1].set_title("Динамика: число 'биомашин'")
# Автокорреляция для текущего шага
axs[2].bar(np.arange(lags_shown), ac_hist[-1][:lags_shown], color='teal', alpha=0.7)
axs[2].set_xlabel("Лаг")
axs[2].set_ylabel("Автокорреляция")
axs[2].set_title("Автокорреляция углового профиля (структурность) и энтропия")
axs[2].text(0.70, 0.70, f"Энтропия: {ent_hist[-1]:.2f}", transform=axs[2].transAxes)
# Карта стромбистов
axs[3].plot(st_heatmap_row, color='orange', label="Карта стромбистов", linewidth=2)
axs[3].set_ylim(0, 1)
axs[3].set_xlabel("Позиция")
axs[3].set_ylabel("Стромбист (1 - стабильность)")
axs[3].set_title(f"Карты стромбистов на шаге {step}")
axs[3].legend()
def animate(i):
global seq, stat_bist_counts, stat_entropy, stat_autocorr, stat_strombists
if i == 0:
stat_bist_counts.clear()
stat_entropy.clear()
stat_autocorr.clear()
stat_strombists.clear()
else:
seq = bio_mutate(seq)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
stat_bist_counts.append(len(runs))
ent = compute_entropy(torsion_profile)
stat_entropy.append(ent)
acorr = compute_autocorr(torsion_profile)
stat_autocorr.append(acorr)
st_count, st_lengths, st_angle_freq, st_heatmap_row = analyze_strombists(runs, seqlen)
stat_strombists.append((st_count, st_lengths, st_angle_freq))
draw_world(seq, axs, i, stat_bist_counts, stat_entropy, stat_autocorr, stat_strombists)
return axs
anim = FuncAnimation(
fig, animate, frames=steps, interval=600, repeat=False, blit=False
)
plt.show()
|