File size: 5,160 Bytes
cab60db 3ffebe8 599d710 3ffebe8 ce76895 716b99a cab60db 70faa9c 3ffebe8 cab60db 70faa9c 455c7bd 3ffebe8 cab60db 3ffebe8 f1e60b9 3ffebe8 f1e60b9 3ffebe8 396e0c2 f1e60b9 3ffebe8 f1e60b9 3ffebe8 716b99a 3ffebe8 716b99a cab60db 396e0c2 30998ff 396e0c2 cab60db ce76895 455c7bd 70faa9c ce76895 599d710 70faa9c 3ffebe8 455c7bd 3ffebe8 ce76895 70faa9c 0bc0cd3 716b99a 455c7bd 70faa9c 0bc0cd3 f1e60b9 455c7bd 599d710 70faa9c 599d710 396e0c2 599d710 30998ff 599d710 30998ff 455c7bd 599d710 30998ff 70faa9c 599d710 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time
from datetime import datetime
# --- ПАРАМЕТРЫ ---
seqlen = 60
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
# --- ФУНКЦИИ ---
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
def bio_mutate(seq):
r = random.random()
if r < 0.70:
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80:
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90:
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else:
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end][::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
return seq[:seqlen]
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result) != 0 else 1
return result[:10]/norm
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
def compute_global_entropy(seq_history):
"""
Вычисление глобальной энтропии на основе исторических последовательностей.
"""
all_torsions = np.concatenate([np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq]) for seq in seq_history])
vals, counts = np.unique(all_torsions, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
# --- UI ---
st.title("🔴 Живой эфир мутаций ДНК")
start = st.button("▶️ Старт эфира")
stop = st.checkbox("⏹️ Остановить")
plot_placeholder = st.empty()
if start:
seq = ''.join(random.choices(bases, k=seqlen))
seq_history = [seq] # История последовательностей для расчета глобальной энтропии
stat_bist_counts = []
stat_entropy = []
step = 0
while True:
if stop:
st.warning("⏹️ Эфир остановлен пользователем.")
break
if step != 0:
seq = bio_mutate(seq)
seq_history.append(seq) # Добавляем в историю
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
stat_bist_counts.append(len(runs))
ent = compute_entropy(torsion_profile)
stat_entropy.append(ent)
acorr = compute_autocorr(torsion_profile)
# Вычисляем глобальную энтропию
global_ent = compute_global_entropy(seq_history)
fig, axs = plt.subplots(4, 1, figsize=(10, 10))
plt.subplots_adjust(hspace=0.45)
axs[0].plot(torsion_profile, color='royalblue')
for start_, end_, val in runs:
axs[0].axvspan(start_, end_, color="red", alpha=0.3)
axs[0].set_ylim(-200, 200)
axs[0].set_title(f"Шаг {step}: {seq}")
axs[0].set_ylabel("Торсионный угол")
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
axs[1].set_ylabel("Биомашины")
axs[1].set_title("Количество машин")
axs[2].bar(np.arange(6), acorr[:6], color='teal')
axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
axs[2].set_xlabel("Лаг")
axs[3].plot(stat_entropy, '-o', color='green', markersize=4)
axs[3].set_title(f"Глобальная Энтропия: {global_ent:.2f}")
axs[3].set_ylabel("Глобальная энтропия")
plot_placeholder.pyplot(fig)
plt.close(fig)
step += 1
time.sleep(0.3)
|