File size: 4,676 Bytes
cab60db 3ffebe8 cab60db 396e0c2 3ffebe8 396e0c2 3ffebe8 cab60db 3ffebe8 cab60db 3ffebe8 396e0c2 3ffebe8 396e0c2 3ffebe8 cab60db 3ffebe8 cab60db 396e0c2 cab60db 396e0c2 3ffebe8 396e0c2 3ffebe8 396e0c2 3ffebe8 396e0c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
# --- НАСТРОЙКИ ---
seqlen = 60
steps = 100
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
def bio_mutate(seq):
r = random.random()
if r < 0.70:
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80:
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90:
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else:
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end]
seq = seq[:start] + subseq[::-1] + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
if len(seq) > seqlen:
seq = seq[:seqlen]
return seq
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result) != 0 else 1
return result[:10]/norm
def simulate_and_plot(steps):
seq = ''.join(random.choices(bases, k=seqlen))
stat_bist_counts = []
stat_entropy = []
stat_autocorr = []
figs = []
for step in range(steps):
if step > 0:
seq = bio_mutate(seq)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
stat_bist_counts.append(len(runs))
ent = compute_entropy(torsion_profile)
stat_entropy.append(ent)
acorr = compute_autocorr(torsion_profile)
stat_autocorr.append(acorr)
fig, axs = plt.subplots(3, 1, figsize=(8, 8))
plt.subplots_adjust(hspace=0.6)
# Торсионный профиль
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
for start, end, val in runs:
axs[0].axvspan(start, end, color="red", alpha=0.3)
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=4)
axs[0].set_ylim(-200, 200)
axs[0].set_title(f"Шаг {step}: {seq}\nМашин: {len(runs)}, энтропия: {ent:.2f}")
axs[0].legend()
# Динамика количества машин
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=3)
axs[1].set_ylim(0, max(10, max(stat_bist_counts)+1))
axs[1].set_title("Динамика: число 'биомашин'")
# Автокорреляция
axs[2].bar(np.arange(6), acorr[:6], color='teal', alpha=0.7)
axs[2].set_title("Автокорреляция и энтропия")
axs[2].text(0.7, 0.7, f"Энтропия: {ent:.2f}", transform=axs[2].transAxes)
figs.append(fig)
return figs
# --- Streamlit UI ---
st.set_page_config(layout="wide")
st.title("🧬 Эволюция ДНК: визуализация торсионного профиля, мутаций и структур")
steps = st.slider("Число шагов мутации", 10, 150, 50)
if st.button("▶ Запустить симуляцию"):
st.info("Генерируется...")
figures = simulate_and_plot(steps)
for fig in figures:
st.pyplot(fig)
|