File size: 4,676 Bytes
cab60db
3ffebe8
 
 
 
cab60db
396e0c2
3ffebe8
396e0c2
3ffebe8
 
 
cab60db
3ffebe8
 
 
 
 
 
 
 
 
 
 
 
 
cab60db
3ffebe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
396e0c2
 
3ffebe8
 
 
 
 
 
 
 
 
396e0c2
 
 
3ffebe8
 
 
 
 
cab60db
3ffebe8
 
 
 
cab60db
396e0c2
 
 
 
 
 
cab60db
396e0c2
3ffebe8
 
 
 
396e0c2
3ffebe8
396e0c2
 
 
3ffebe8
 
 
 
396e0c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy

# --- НАСТРОЙКИ ---
seqlen = 60
steps = 100
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']

def find_local_min_runs(profile, min_run=1, max_run=2):
    result = []
    N = len(profile)
    i = 0
    while i < N:
        run_val = profile[i]
        run_length = 1
        while i + run_length < N and profile[i + run_length] == run_val:
            run_length += 1
        if min_run <= run_length <= max_run:
            result.append((i, i + run_length - 1, run_val))
        i += run_length
    return result

def bio_mutate(seq):
    r = random.random()
    if r < 0.70:
        idx = random.randint(0, len(seq)-1)
        orig = seq[idx]
        prob = random.random()
        if orig in 'AG':
            newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
        elif orig in 'CT':
            newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
        else:
            newbase = random.choice([b for b in bases if b != orig])
        seq = seq[:idx] + newbase + seq[idx+1:]
    elif r < 0.80:
        idx = random.randint(0, len(seq)-1)
        ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
        seq = seq[:idx] + ins + seq[idx:]
        if len(seq) > seqlen:
            seq = seq[:seqlen]
    elif r < 0.90:
        if len(seq) > 4:
            idx = random.randint(0, len(seq)-2)
            dell = random.randint(1, min(3, len(seq)-idx))
            seq = seq[:idx] + seq[idx+dell:]
    else:
        if len(seq) > 10:
            start = random.randint(0, len(seq)-6)
            end = start + random.randint(3,6)
            subseq = seq[start:end]
            seq = seq[:start] + subseq[::-1] + seq[end:]

    while len(seq) < seqlen:
        seq += random.choice(bases)
    if len(seq) > seqlen:
        seq = seq[:seqlen]
    return seq

def compute_entropy(profile):
    vals, counts = np.unique(profile, return_counts=True)
    p = counts / counts.sum()
    return scipy_entropy(p, base=2)

def compute_autocorr(profile):
    profile = profile - np.mean(profile)
    result = np.correlate(profile, profile, mode='full')
    result = result[result.size // 2:]
    norm = np.max(result) if np.max(result) != 0 else 1
    return result[:10]/norm

def simulate_and_plot(steps):
    seq = ''.join(random.choices(bases, k=seqlen))
    stat_bist_counts = []
    stat_entropy = []
    stat_autocorr = []
    figs = []

    for step in range(steps):
        if step > 0:
            seq = bio_mutate(seq)

        torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
        runs = find_local_min_runs(torsion_profile, min_run, max_run)
        stat_bist_counts.append(len(runs))
        ent = compute_entropy(torsion_profile)
        stat_entropy.append(ent)
        acorr = compute_autocorr(torsion_profile)
        stat_autocorr.append(acorr)

        fig, axs = plt.subplots(3, 1, figsize=(8, 8))
        plt.subplots_adjust(hspace=0.6)

        # Торсионный профиль
        axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
        for start, end, val in runs:
            axs[0].axvspan(start, end, color="red", alpha=0.3)
            axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=4)
        axs[0].set_ylim(-200, 200)
        axs[0].set_title(f"Шаг {step}: {seq}\nМашин: {len(runs)}, энтропия: {ent:.2f}")
        axs[0].legend()

        # Динамика количества машин
        axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=3)
        axs[1].set_ylim(0, max(10, max(stat_bist_counts)+1))
        axs[1].set_title("Динамика: число 'биомашин'")

        # Автокорреляция
        axs[2].bar(np.arange(6), acorr[:6], color='teal', alpha=0.7)
        axs[2].set_title("Автокорреляция и энтропия")
        axs[2].text(0.7, 0.7, f"Энтропия: {ent:.2f}", transform=axs[2].transAxes)

        figs.append(fig)

    return figs

# --- Streamlit UI ---
st.set_page_config(layout="wide")
st.title("🧬 Эволюция ДНК: визуализация торсионного профиля, мутаций и структур")

steps = st.slider("Число шагов мутации", 10, 150, 50)
if st.button("▶ Запустить симуляцию"):
    st.info("Генерируется...")
    figures = simulate_and_plot(steps)
    for fig in figures:
        st.pyplot(fig)