Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,775 Bytes
f16bb9f 15b7f31 f16bb9f 15b7f31 f16bb9f 15b7f31 257d039 15b7f31 f16bb9f 15b7f31 f16bb9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
"""
File: utils.py
Author: Dmitry Ryumin, Maxim Markitantov, Elena Ryumina, Anastasia Dvoynikova, and Alexey Karpov
Description: Utility functions.
License: MIT License
"""
import time
import torch
import os
import subprocess
import bisect
import re
import requests
from torchvision import transforms
from PIL import Image
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from pathlib import Path
from contextlib import suppress
from urllib.parse import urlparse
from contextlib import ContextDecorator
from typing import Callable
class Timer(ContextDecorator):
"""Context manager for measuring code execution time"""
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, *args):
self.end = time.time()
self.execution_time = f"{self.end - self.start:.2f} seconds"
def __str__(self):
return self.execution_time
def load_model(
model_url: str, folder_path: str, force_reload: bool = False
) -> str | None:
file_name = Path(urlparse(model_url).path).name
file_path = Path(folder_path) / file_name
if file_path.exists() and not force_reload:
return str(file_path)
with suppress(Exception), requests.get(model_url, stream=True) as response:
file_path.parent.mkdir(parents=True, exist_ok=True)
with file_path.open("wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
return str(file_path)
return None
def readetect_speech(
file_path: str,
read_audio: Callable,
get_speech_timestamps: Callable,
vad_model: torch.jit.ScriptModule,
sr: int = 16000,
) -> list[dict]:
wav = read_audio(file_path, sampling_rate=sr)
# get speech timestamps from full audio file
speech_timestamps = get_speech_timestamps(wav, vad_model, sampling_rate=sr)
return wav, speech_timestamps
def calculate_mode(series):
mode = series.mode()
return mode[0] if not mode.empty else None
def pth_processing(fp):
class PreprocessInput(torch.nn.Module):
def init(self):
super(PreprocessInput, self).init()
def forward(self, x):
x = x.to(torch.float32)
x = torch.flip(x, dims=(0,))
x[0, :, :] -= 91.4953
x[1, :, :] -= 103.8827
x[2, :, :] -= 131.0912
return x
def get_img_torch(img, target_size=(224, 224)):
transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
img = img.resize(target_size, Image.Resampling.NEAREST)
img = transform(img)
img = torch.unsqueeze(img, 0)
return img
return get_img_torch(fp)
def get_idx_frames_in_windows(
frames: list[int], window: dict, fps: int, sr: int = 16000
) -> list[list]:
frames_in_windows = [
idx
for idx, frame in enumerate(frames)
if window["start"] * fps / sr <= frame < window["end"] * fps / sr
]
return frames_in_windows
# Maxim code
def slice_audio(
start_time: float,
end_time: float,
win_max_length: float,
win_shift: float,
win_min_length: float,
) -> list[dict]:
"""Slices audio on windows
Args:
start_time (float): Start time of audio
end_time (float): End time of audio
win_max_length (float): Window max length
win_shift (float): Window shift
win_min_length (float): Window min length
Returns:
list[dict]: List of dict with timings, f.e.: {'start': 0, 'end': 12}
"""
if end_time < start_time:
return []
elif (end_time - start_time) > win_max_length:
timings = []
while start_time < end_time:
end_time_chunk = start_time + win_max_length
if end_time_chunk < end_time:
timings.append({"start": start_time, "end": end_time_chunk})
elif end_time_chunk == end_time: # if tail exact `win_max_length` seconds
timings.append({"start": start_time, "end": end_time_chunk})
break
else: # if tail less then `win_max_length` seconds
if (
end_time - start_time < win_min_length
): # if tail less then `win_min_length` seconds
break
timings.append({"start": start_time, "end": end_time})
break
start_time += win_shift
return timings
else:
return [{"start": start_time, "end": end_time}]
def convert_video_to_audio(file_path: str, sr: int = 16000) -> str:
path_save = file_path.split(".")[0] + ".wav"
if not os.path.exists(path_save):
ffmpeg_command = f"ffmpeg -y -i {file_path} -async 1 -vn -acodec pcm_s16le -ar {sr} {path_save}"
subprocess.call(ffmpeg_command, shell=True)
return path_save
def find_nearest_frames(target_frames, all_frames):
nearest_frames = []
for frame in target_frames:
pos = bisect.bisect_left(all_frames, frame)
if pos == 0:
nearest_frame = all_frames[0]
elif pos == len(all_frames):
nearest_frame = all_frames[-1]
else:
before = all_frames[pos - 1]
after = all_frames[pos]
nearest_frame = before if frame - before <= after - frame else after
nearest_frames.append(nearest_frame)
return nearest_frames
def find_intersections(
x: list[dict], y: list[dict], min_length: float = 0
) -> list[dict]:
"""Find intersections of two lists of dicts with intervals, preserving structure of `x` and adding intersection info
Args:
x (list[dict]): First list of intervals
y (list[dict]): Second list of intervals
min_length (float, optional): Minimum length of intersection. Defaults to 0.
Returns:
list[dict]: Windows with intersections, maintaining structure of `x`, and indicating intersection presence.
"""
timings = []
j = 0
for interval_x in x:
original_start = int(interval_x["start"])
original_end = int(interval_x["end"])
intersections_found = False
while j < len(y) and y[j]["end"] < original_start:
j += 1 # Skip any intervals in `y` that end before the current interval in `x` starts
# Check for all overlapping intervals in `y`
temp_j = (
j # Temporary pointer to check intersections within `y` for current `x`
)
while temp_j < len(y) and y[temp_j]["start"] <= original_end:
# Calculate the intersection between `x[i]` and `y[j]`
intersection_start = max(original_start, y[temp_j]["start"])
intersection_end = min(original_end, y[temp_j]["end"])
if (
intersection_start < intersection_end
and (intersection_end - intersection_start) >= min_length
):
timings.append(
{
"original_start": original_start,
"original_end": original_end,
"start": intersection_start,
"end": intersection_end,
"speech": True,
}
)
intersections_found = True
temp_j += 1 # Move to the next interval in `y` for further intersections
# If no intersections were found, add the interval with `intersected` set to False
if not intersections_found:
timings.append(
{
"original_start": original_start,
"original_end": original_end,
"start": None,
"end": None,
"speech": False,
}
)
return timings
# Anastasia code
class ASRModel:
def __init__(self, checkpoint_path: str, device: torch.device):
self.processor = WhisperProcessor.from_pretrained(checkpoint_path)
self.model = WhisperForConditionalGeneration.from_pretrained(
checkpoint_path
).to(device)
self.device = device
self.model.config.forced_decoder_ids = None
def __call__(
self, sample: torch.Tensor, audio_windows: dict, sr: int = 16000
) -> tuple:
texts = []
for t in range(len(audio_windows)):
input_features = self.processor(
sample[audio_windows[t]["start"] : audio_windows[t]["end"]],
sampling_rate=sr,
return_tensors="pt",
).input_features
predicted_ids = self.model.generate(input_features.to(self.device))
transcription = self.processor.batch_decode(
predicted_ids, skip_special_tokens=False
)
curr_text = re.findall(r"> ([^<>]+)", transcription[0])
if curr_text:
texts.append(curr_text)
else:
texts.appemd("")
# for drawing
input_features = self.processor(
sample, sampling_rate=sr, return_tensors="pt"
).input_features
predicted_ids = self.model.generate(input_features.to(self.device))
transcription = self.processor.batch_decode(
predicted_ids, skip_special_tokens=False
)
total_text = re.findall(r"> ([^<>]+)", transcription[0])
return texts, total_text
def convert_webm_to_mp4(input_file):
path_save = input_file.split(".")[0] + ".mp4"
if not os.path.exists(path_save):
ff_video = "ffmpeg -i {} -c:v copy -c:a aac -strict experimental {}".format(
input_file, path_save
)
subprocess.call(ff_video, shell=True)
return path_save
|