File size: 5,392 Bytes
f16bb9f
 
 
 
 
 
 
19011fd
f16bb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19011fd
f16bb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
File: submit.py
Author: Dmitry Ryumin, Maxim Markitantov, Elena Ryumina, Anastasia Dvoynikova, and Alexey Karpov
Description: Event handler for Gradio app to submit.
License: MIT License
"""

import spaces
import torch
import pandas as pd
import cv2
import gradio as gr

# Importing necessary components for the Gradio app
from app.config import config_data
from app.utils import (
    convert_video_to_audio,
    readetect_speech,
    slice_audio,
    find_intersections,
    calculate_mode,
    find_nearest_frames,
)
from app.plots import (
    get_evenly_spaced_frame_indices,
    plot_audio,
    display_frame_info,
    plot_images,
    plot_predictions,
)
from app.data_init import (
    read_audio,
    get_speech_timestamps,
    vad_model,
    video_model,
    asr,
    audio_model,
    text_model,
)
from app.load_models import VideoFeatureExtractor
from app.components import html_message


@spaces.GPU
def event_handler_submit(
    video: str,
) -> tuple[gr.HTML, gr.Plot, gr.Plot, gr.Plot, gr.Plot]:
    audio_file_path = convert_video_to_audio(file_path=video, sr=config_data.General_SR)
    wav, vad_info = readetect_speech(
        file_path=audio_file_path,
        read_audio=read_audio,
        get_speech_timestamps=get_speech_timestamps,
        vad_model=vad_model,
        sr=config_data.General_SR,
    )

    audio_windows = slice_audio(
        start_time=config_data.General_START_TIME,
        end_time=int(len(wav)),
        win_max_length=int(config_data.General_WIN_MAX_LENGTH * config_data.General_SR),
        win_shift=int(config_data.General_WIN_SHIFT * config_data.General_SR),
        win_min_length=int(config_data.General_WIN_MIN_LENGTH * config_data.General_SR),
    )

    intersections = find_intersections(
        x=audio_windows,
        y=vad_info,
        min_length=config_data.General_WIN_MIN_LENGTH * config_data.General_SR,
    )

    vfe = VideoFeatureExtractor(video_model, file_path=video, with_features=False)
    vfe.preprocess_video()

    transcriptions, total_text = asr(wav, audio_windows)

    window_frames = []
    preds_emo = []
    preds_sen = []
    for w_idx, window in enumerate(audio_windows):
        a_w = intersections[w_idx]
        if not a_w["speech"]:
            a_pred = None
        else:
            wave = wav[a_w["start"] : a_w["end"]].clone()
            a_pred, _ = audio_model(wave)

        v_pred, _ = vfe(window, config_data.General_WIN_MAX_LENGTH)

        t_pred, _ = text_model(transcriptions[w_idx][0])

        if a_pred:
            pred_emo = (a_pred["emo"] + v_pred["emo"] + t_pred["emo"]) / 3
            pred_sen = (a_pred["sen"] + v_pred["sen"] + t_pred["sen"]) / 3
        else:
            pred_emo = (v_pred["emo"] + t_pred["emo"]) / 2
            pred_sen = (v_pred["sen"] + t_pred["sen"]) / 2

        frames = list(
            range(
                int(window["start"] * vfe.fps / config_data.General_SR) + 1,
                int(window["end"] * vfe.fps / config_data.General_SR) + 2,
            )
        )
        preds_emo.extend([torch.argmax(pred_emo).numpy()] * len(frames))
        preds_sen.extend([torch.argmax(pred_sen).numpy()] * len(frames))
        window_frames.extend(frames)

    if max(window_frames) < vfe.frame_number:
        missed_frames = list(range(max(window_frames) + 1, vfe.frame_number + 1))
        window_frames.extend(missed_frames)
        preds_emo.extend([preds_emo[-1]] * len(missed_frames))
        preds_sen.extend([preds_sen[-1]] * len(missed_frames))

    df_pred = pd.DataFrame(columns=["frames", "pred_emo", "pred_sent"])
    df_pred["frames"] = window_frames
    df_pred["pred_emo"] = preds_emo
    df_pred["pred_sent"] = preds_sen

    df_pred = df_pred.groupby("frames").agg(
        {
            "pred_emo": calculate_mode,
            "pred_sent": calculate_mode,
        }
    )

    frame_indices = get_evenly_spaced_frame_indices(vfe.frame_number, 9)
    num_frames = len(wav)
    time_axis = [i / config_data.General_SR for i in range(num_frames)]
    plt_audio = plot_audio(time_axis, wav.unsqueeze(0), frame_indices, vfe.fps, (12, 2))

    all_idx_faces = list(vfe.faces[1].keys())
    need_idx_faces = find_nearest_frames(frame_indices, all_idx_faces)
    faces = []
    for idx_frame, idx_faces in zip(frame_indices, need_idx_faces):
        cur_face = cv2.resize(
            vfe.faces[1][idx_faces], (224, 224), interpolation=cv2.INTER_AREA
        )
        faces.append(
            display_frame_info(
                cur_face, "Frame: {}".format(idx_frame + 1), box_scale=0.3
            )
        )
    plt_faces = plot_images(faces)

    plt_emo = plot_predictions(
        df_pred,
        "pred_emo",
        "Emotion",
        list(config_data.General_DICT_EMO),
        (12, 2.5),
        [i + 1 for i in frame_indices],
        2,
    )
    plt_sent = plot_predictions(
        df_pred,
        "pred_sent",
        "Sentiment",
        list(config_data.General_DICT_SENT),
        (12, 1.5),
        [i + 1 for i in frame_indices],
        2,
    )

    return (
        html_message(
            message=config_data.InformationMessages_NOTI_RESULTS[1],
            error=False,
            visible=False,
        ),
        gr.Plot(value=plt_audio, visible=True),
        gr.Plot(value=plt_faces, visible=True),
        gr.Plot(value=plt_emo, visible=True),
        gr.Plot(value=plt_sent, visible=True),
    )