Dmitry43243242 commited on
Commit
0650c92
·
verified ·
1 Parent(s): adf7368

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -11
app.py CHANGED
@@ -8,15 +8,12 @@ from haystack import Document
8
  from haystack.components.readers import ExtractiveReader
9
  import wikipediaapi
10
 
11
- def init_models():
12
- model = ViTForImageClassification.from_pretrained("Dmitry43243242/banana-disease-leaf-model")
13
- feature_extractor = ViTFeatureExtractor.from_pretrained("Dmitry43243242/banana-disease-leaf-model")
14
- tokenizer_qa = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
15
- model_qa = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
16
- summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
17
- translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16)
18
-
19
- return model, feature_extractor, tokenizer_qa, model_qa, summarizer, translator
20
 
21
  def translate_question(question, translator):
22
  text_translated = translator(question,
@@ -42,8 +39,6 @@ def process_input(img, text):
42
  title="Banana Leaf Disease Classifier"
43
  labels = ['banana_healthy_leaf', 'black_sigatoka', 'yellow_sigatoka', 'panama_disease', 'moko_disease', 'insect_pest', 'bract_mosaic_virus']
44
 
45
- model, feature_extractor, tokenizer_qa, model_qa, summarizer, translator = init_models()
46
-
47
 
48
  translate_eng_question = translate_question(text, translator)
49
 
 
8
  from haystack.components.readers import ExtractiveReader
9
  import wikipediaapi
10
 
11
+ model = ViTForImageClassification.from_pretrained("Dmitry43243242/banana-disease-leaf-model")
12
+ feature_extractor = ViTFeatureExtractor.from_pretrained("Dmitry43243242/banana-disease-leaf-model")
13
+ tokenizer_qa = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
14
+ model_qa = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
15
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
16
+ translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16)
 
 
 
17
 
18
  def translate_question(question, translator):
19
  text_translated = translator(question,
 
39
  title="Banana Leaf Disease Classifier"
40
  labels = ['banana_healthy_leaf', 'black_sigatoka', 'yellow_sigatoka', 'panama_disease', 'moko_disease', 'insect_pest', 'bract_mosaic_virus']
41
 
 
 
42
 
43
  translate_eng_question = translate_question(text, translator)
44