Spaces:
Runtime error
Runtime error
erwold
commited on
Commit
·
17d135f
1
Parent(s):
9217369
Initial Commit
Browse files
app.py
CHANGED
@@ -52,38 +52,47 @@ class FluxInterface:
|
|
52 |
if self.models is not None:
|
53 |
return
|
54 |
|
|
|
|
|
55 |
# Load FLUX components
|
56 |
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
|
57 |
-
text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder")
|
58 |
-
text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2")
|
59 |
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
|
60 |
|
61 |
-
# Load VAE and transformer
|
62 |
-
vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux/vae")
|
63 |
-
transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux/transformer")
|
64 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
|
65 |
|
66 |
-
# Load Qwen2VL components
|
67 |
-
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl")
|
68 |
|
69 |
-
# Load connector
|
70 |
-
connector = Qwen2Connector()
|
71 |
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
|
72 |
-
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location=
|
|
|
|
|
73 |
connector.load_state_dict(connector_state)
|
|
|
74 |
|
75 |
# Load T5 embedder
|
76 |
-
self.t5_context_embedder = nn.Linear(4096, 3072)
|
77 |
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
|
78 |
-
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location=
|
|
|
|
|
79 |
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
|
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
model.to(self.device).to(self.dtype)
|
85 |
model.eval()
|
86 |
|
|
|
|
|
87 |
self.models = {
|
88 |
'tokenizer': tokenizer,
|
89 |
'text_encoder': text_encoder,
|
@@ -110,7 +119,7 @@ class FluxInterface:
|
|
110 |
vae=vae,
|
111 |
text_encoder=text_encoder,
|
112 |
tokenizer=tokenizer,
|
113 |
-
)
|
114 |
|
115 |
def resize_image(self, img, max_pixels=1050000):
|
116 |
if not isinstance(img, Image.Image):
|
|
|
52 |
if self.models is not None:
|
53 |
return
|
54 |
|
55 |
+
logger.info("Starting model loading...")
|
56 |
+
|
57 |
# Load FLUX components
|
58 |
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
|
59 |
+
text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder").to(self.dtype).to(self.device)
|
60 |
+
text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2").to(self.dtype).to(self.device)
|
61 |
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
|
62 |
|
63 |
+
# Load VAE and transformer
|
64 |
+
vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux/vae").to(self.dtype).to(self.device)
|
65 |
+
transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux/transformer").to(self.dtype).to(self.device)
|
66 |
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
|
67 |
|
68 |
+
# Load Qwen2VL components
|
69 |
+
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl").to(self.dtype).to(self.device)
|
70 |
|
71 |
+
# Load connector
|
72 |
+
connector = Qwen2Connector().to(self.dtype).to(self.device)
|
73 |
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
|
74 |
+
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location='cpu')
|
75 |
+
# Move state dict to dtype before loading
|
76 |
+
connector_state = {k: v.to(self.dtype) for k, v in connector_state.items()}
|
77 |
connector.load_state_dict(connector_state)
|
78 |
+
connector = connector.to(self.device)
|
79 |
|
80 |
# Load T5 embedder
|
81 |
+
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).to(self.device)
|
82 |
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
|
83 |
+
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location='cpu')
|
84 |
+
# Move state dict to dtype before loading
|
85 |
+
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
|
86 |
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
87 |
+
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
|
88 |
|
89 |
+
# Set models to eval mode
|
90 |
+
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]:
|
91 |
+
model.requires_grad_(False)
|
|
|
92 |
model.eval()
|
93 |
|
94 |
+
logger.info("All models loaded successfully")
|
95 |
+
|
96 |
self.models = {
|
97 |
'tokenizer': tokenizer,
|
98 |
'text_encoder': text_encoder,
|
|
|
119 |
vae=vae,
|
120 |
text_encoder=text_encoder,
|
121 |
tokenizer=tokenizer,
|
122 |
+
)
|
123 |
|
124 |
def resize_image(self, img, max_pixels=1050000):
|
125 |
if not isinstance(img, Image.Image):
|