erwold
Initial Commit
af7a5be
raw
history blame
11.4 kB
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
MODEL_ID = "Djrango/Qwen2vl-Flux"
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class FluxInterface:
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
self.device = device
self.dtype = torch.bfloat16
self.models = None
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
def load_models(self):
if self.models is not None:
return
# Load FLUX components
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder")
text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2")
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
# Load VAE and transformer from flux folder
vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux")
transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
# Load Qwen2VL components from qwen2-vl folder
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl")
# Load connector and t5 embedder from qwen2-vl folder
connector = Qwen2Connector()
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location=self.device)
connector.load_state_dict(connector_state)
# Load T5 embedder
self.t5_context_embedder = nn.Linear(4096, 3072)
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location=self.device)
self.t5_context_embedder.load_state_dict(t5_embedder_state)
# Move models to device and set dtype
models = [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]
for model in models:
model.to(self.device).to(self.dtype)
model.eval()
self.models = {
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'text_encoder_two': text_encoder_two,
'tokenizer_two': tokenizer_two,
'vae': vae,
'transformer': transformer,
'scheduler': scheduler,
'qwen2vl': qwen2vl,
'connector': connector
}
# Initialize processor and pipeline
self.qwen2vl_processor = AutoProcessor.from_pretrained(
self.MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
self.pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
def resize_image(self, img, max_pixels=1050000):
if not isinstance(img, Image.Image):
img = Image.fromarray(img)
width, height = img.size
num_pixels = width * height
if num_pixels > max_pixels:
scale = math.sqrt(max_pixels / num_pixels)
new_width = int(width * scale)
new_height = int(height * scale)
new_width = new_width - (new_width % 8)
new_height = new_height - (new_height % 8)
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def process_image(self, image):
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
with torch.no_grad():
inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = self.models['connector'](image_hidden_state)
return image_hidden_state, image_grid_thw
def compute_t5_text_embeddings(self, prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = self.models['tokenizer_two'](
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
prompt_embeds = prompt_embeds.to(dtype=self.dtype, device=self.device)
prompt_embeds = self.t5_context_embedder(prompt_embeds)
return prompt_embeds
def compute_text_embeddings(self, prompt=""):
with torch.no_grad():
text_inputs = self.models['tokenizer'](
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder'](
text_inputs.input_ids,
output_hidden_states=False
)
pooled_prompt_embeds = prompt_embeds.pooler_output.to(self.dtype)
return pooled_prompt_embeds
def generate(self, input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None):
try:
if seed is not None:
torch.manual_seed(seed)
self.load_models()
# Process input image
input_image = self.resize_image(input_image)
qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
pooled_prompt_embeds = self.compute_text_embeddings("")
# Get T5 embeddings if prompt is provided
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
# Generate images
output_images = self.pipeline(
prompt_embeds=qwen2_hidden_state.repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images
return output_images
except Exception as e:
print(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Initialize the interface
interface = FluxInterface()
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎨 Qwen2vl-Flux Image Variation Demo
Upload an image and get AI-generated variations. You can optionally add a text prompt to guide the generation.
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=384,
width=384,
tool="select"
)
prompt = gr.Textbox(
label="Optional Text Prompt",
placeholder="Enter text prompt here (optional)",
lines=2
)
with gr.Group():
with gr.Row(equal_height=True):
with gr.Column(scale=1):
guidance = gr.Slider(
minimum=1,
maximum=10,
value=3.5,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
with gr.Column(scale=1):
steps = gr.Slider(
minimum=1,
maximum=50,
value=28,
step=1,
label="Steps",
info="More steps = better quality but slower"
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
num_images = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=1,
label="Number of Images",
info="Generate multiple variations"
)
with gr.Column(scale=1):
seed = gr.Number(
label="Random Seed",
value=None,
precision=0,
info="Optional, for reproducibility"
)
submit_btn = gr.Button(
"Generate Variations",
variant="primary",
scale=1
)
with gr.Column(scale=1):
output_gallery = gr.Gallery(
label="Generated Variations",
columns=2,
rows=2,
height=768,
object_fit="contain",
show_label=True
)
gr.Markdown("""
### Tips:
- Upload any image to get started
- Add a text prompt to guide the generation in a specific direction
- Adjust guidance scale to control how closely the output follows the prompt
- Increase steps for higher quality (but slower) generation
- Use the same seed to reproduce results
""")
# Set up the generation function
submit_btn.click(
fn=interface.generate,
inputs=[
input_image,
prompt,
guidance,
steps,
num_images,
seed
],
outputs=output_gallery
)
# Launch the app
if __name__ == "__main__":
demo.launch()