Spaces:
Runtime error
Runtime error
File size: 13,147 Bytes
49d4954 0ded2d6 fb9dbfc ac06db6 2c1a6cc f53a34a 29fa1d0 fb9dbfc 2c1a6cc fb9dbfc 49d4954 ac06db6 2c1a6cc ac06db6 2c1a6cc ac06db6 9590121 2c1a6cc 9590121 2c1a6cc 9590121 2c1a6cc 9590121 2c1a6cc 9590121 2c1a6cc 9590121 2c1a6cc 49d4954 2c1a6cc 9590121 2c1a6cc 9590121 7ffc337 2c1a6cc 9590121 2c1a6cc 9590121 2c1a6cc 0ded2d6 2c1a6cc 9590121 2c1a6cc 76678b6 2c1a6cc 76678b6 2c1a6cc 76678b6 9590121 76678b6 2c1a6cc 0ded2d6 2c1a6cc 9590121 2c1a6cc 9590121 2c1a6cc 49d4954 2c1a6cc 49d4954 2c1a6cc 0ded2d6 2c1a6cc 0ded2d6 2c1a6cc 49d4954 2c1a6cc 9590121 2c1a6cc 9590121 2c1a6cc 9590121 2c1a6cc 49d4954 9590121 461d656 9590121 2c1a6cc 76678b6 49d4954 2c1a6cc bb47725 49d4954 d800f84 2c1a6cc d800f84 a349a7f 2c1a6cc d800f84 2c1a6cc a349a7f d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 0ded2d6 d800f84 4236cfe 2c1a6cc 4236cfe 2c1a6cc 4236cfe 2c1a6cc 4236cfe d800f84 4236cfe 2c1a6cc 4236cfe 2c1a6cc 4236cfe d800f84 2c1a6cc 4236cfe 0ded2d6 2c1a6cc 0ded2d6 4236cfe 2c1a6cc 49d4954 d800f84 a349a7f d800f84 2c1a6cc 00a1ccb a349a7f 49d4954 2c1a6cc af7a5be 0ded2d6 2c1a6cc bb47725 7ef91cf 49d4954 9217369 2c1a6cc 9217369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
import math
import logging
import sys
from huggingface_hub import snapshot_download
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
import spaces
# 设置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
MODEL_ID = "Djrango/Qwen2vl-Flux"
MODEL_CACHE_DIR = "model_cache"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
# 预下载模型
if not os.path.exists(MODEL_CACHE_DIR):
logger.info("Starting model download...")
try:
snapshot_download(
repo_id=MODEL_ID,
local_dir=MODEL_CACHE_DIR,
local_dir_use_symlinks=False
)
logger.info("Model download completed successfully")
except Exception as e:
logger.error(f"Error downloading models: {str(e)}")
raise
# 加载小模型到 GPU
logger.info("Loading small models to GPU...")
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
text_encoder = CLIPTextModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")
).to(dtype).to(device)
text_encoder_two = T5EncoderModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")
).to(dtype).to(device)
tokenizer_two = T5TokenizerFast.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2"))
# 大模型初始加载到 CPU
logger.info("Loading large models to CPU...")
vae = AutoencoderKL.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/vae")
).to(dtype).cpu()
transformer = FluxTransformer2DModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/transformer")
).to(dtype).cpu()
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/scheduler"),
shift=1
)
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
).to(dtype).cpu()
qwen2vl_processor = AutoProcessor.from_pretrained(
MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
# 加载 connector 和 embedder 到 CPU
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
connector = Qwen2Connector().to(dtype).cpu()
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
connector_state = torch.load(connector_path, map_location='cpu')
connector_state = {k.replace('module.', ''): v.to(dtype) for k, v in connector_state.items()}
connector.load_state_dict(connector_state)
t5_context_embedder = nn.Linear(4096, 3072).to(dtype).cpu()
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
t5_embedder_state = {k: v.to(dtype) for k, v in t5_embedder_state.items()}
t5_context_embedder.load_state_dict(t5_embedder_state)
# 创建pipeline (先用CPU上的模型)
pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
# 设置所有模型为eval模式
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl,
connector, t5_context_embedder]:
model.requires_grad_(False)
model.eval()
# Aspect ratio options
ASPECT_RATIOS = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"9:16": (768, 1344),
"2.4:1": (1536, 640),
"3:4": (896, 1152),
"4:3": (1152, 896),
}
def process_image(image):
"""Process image with Qwen2VL model"""
try:
# 将 Qwen2VL 相关模型移到 GPU
logger.info("Moving Qwen2VL models to GPU...")
qwen2vl.to(device)
connector.to(device)
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = qwen2vl_processor.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
with torch.no_grad():
inputs = qwen2vl_processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt"
).to(device)
output_hidden_state, image_token_mask, image_grid_thw = qwen2vl(**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = connector(image_hidden_state)
# 保存结果到 CPU
result = (image_hidden_state.cpu(), image_grid_thw)
# 将模型移回 CPU 并清理显存
logger.info("Moving Qwen2VL models back to CPU...")
qwen2vl.cpu()
connector.cpu()
torch.cuda.empty_cache()
return result
except Exception as e:
logger.error(f"Error in process_image: {str(e)}")
raise
def compute_t5_text_embeddings(prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = tokenizer_two(
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(device)
prompt_embeds = text_encoder_two(text_inputs.input_ids)[0]
# 将 t5_context_embedder 移到 GPU
t5_context_embedder.to(device)
prompt_embeds = t5_context_embedder(prompt_embeds)
# 将 t5_context_embedder 移回 CPU
t5_context_embedder.cpu()
return prompt_embeds
def compute_text_embeddings(prompt=""):
"""Compute text embeddings for the prompt"""
with torch.no_grad():
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt"
).to(device)
prompt_embeds = text_encoder(
text_inputs.input_ids,
output_hidden_states=False
)
return prompt_embeds.pooler_output
@spaces.GPU(duration=120) # 使用ZeroGPU装饰器
def generate_images(input_image, prompt="", guidance_scale=3.5,
num_inference_steps=28, num_images=1, seed=None, aspect_ratio="1:1"):
"""Generate images using the pipeline"""
try:
logger.info(f"Starting generation with prompt: {prompt}")
if input_image is None:
raise ValueError("No input image provided")
if seed is not None:
torch.manual_seed(seed)
logger.info(f"Set random seed to: {seed}")
# Process image with Qwen2VL
qwen2_hidden_state, image_grid_thw = process_image(input_image)
# Compute text embeddings
pooled_prompt_embeds = compute_text_embeddings(prompt)
t5_prompt_embeds = compute_t5_text_embeddings(prompt)
# Get dimensions
width, height = ASPECT_RATIOS[aspect_ratio]
logger.info(f"Using dimensions: {width}x{height}")
# Generate images
try:
logger.info("Starting image generation...")
# 将 Transformer 和 VAE 移到 GPU
logger.info("Moving Transformer and VAE to GPU...")
transformer.to(device)
vae.to(device)
# 更新 pipeline 中的模型引用
pipeline.transformer = transformer
pipeline.vae = vae
output_images = pipeline(
prompt_embeds=qwen2_hidden_state.to(device).repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
logger.info("Image generation completed")
# 将 Transformer 和 VAE 移回 CPU
logger.info("Moving models back to CPU...")
#transformer.cpu()
#vae.cpu()
torch.cuda.empty_cache()
return output_images
except Exception as e:
raise RuntimeError(f"Error generating images: {str(e)}")
except Exception as e:
logger.error(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container { max-width: 1200px; margin: auto; padding: 0 20px; }
.header { text-align: center; margin: 20px 0 40px 0; padding: 20px; background: #f7f7f7; border-radius: 12px; }
.param-row { padding: 10px 0; }
footer { margin-top: 40px; padding: 20px; border-top: 1px solid #eee; }
"""
) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown("""
<div class="header">
# 🎨 Qwen2vl-Flux Image Variation Demo
Generate creative variations of your images with optional text guidance
</div>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Your Image",
type="pil",
height=384,
sources=["upload", "clipboard"]
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
prompt = gr.Textbox(
label="Text Prompt (Optional)",
placeholder="As Long As Possible...",
lines=3
)
with gr.Row(elem_classes="param-row"):
guidance = gr.Slider(
minimum=1,
maximum=10,
value=3.5,
step=0.5,
label="Guidance Scale"
)
steps = gr.Slider(
minimum=1,
maximum=30,
value=28,
step=1,
label="Sampling Steps"
)
with gr.Row(elem_classes="param-row"):
num_images = gr.Slider(
minimum=1,
maximum=2,
value=1, # 默认改为1
step=1,
label="Number of Images"
)
seed = gr.Number(
label="Random Seed",
value=None,
precision=0
)
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"],
value="1:1"
)
submit_btn = gr.Button("🎨 Generate", variant="primary", size="lg")
with gr.Column(scale=1):
output_gallery = gr.Gallery(
label="Generated Variations",
columns=2,
rows=2,
height=700,
object_fit="contain",
show_label=True,
allow_preview=True
)
submit_btn.click(
fn=generate_images,
inputs=[
input_image,
prompt,
guidance,
steps,
num_images,
seed,
aspect_ratio
],
outputs=[output_gallery],
show_progress=True
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |