from flask import Flask, jsonify, request from pathlib import Path import sys import torch import os from torch import autocast from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline import streamlit as st import io from PIL import Image from huggingface_hub import login # HF_TOKEN = os.environ.get("HF_TOKEN") login(token='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') pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-model", safety_checker=None, torch_dtype=torch.float16).to("cpu") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) # pipe.enable_xformers_memory_efficient_attention() #if gpu is available g_cuda = None FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) app = Flask(__name__) # @app.route("/", methods=["POST"]) def generate(): with st.form(key="Form :", clear_on_submit = True): prompt = st.text_area(label = "prompt", key="pmpt") negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt") num_samples = st.number_input("No. of samples", step=1) Submit = st.form_submit_button(label='Submit') if Submit: guidance_scale = 7.5 num_inference_steps = 24 height = 512 width = 512 g_cuda = torch.Generator(device='cpu') seed = 52362 g_cuda.manual_seed(seed) with autocast("cpu"), torch.inference_mode(): images = pipe( prompt, height=height, width=width, negative_prompt=negative_prompt, num_images_per_prompt=num_samples, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=g_cuda ).images st.image(images) else: st.write('') # driver function if __name__ == '__main__': generate()