from flask import Flask, jsonify, request from pathlib import Path import sys import torch import os from torch import autocast from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline import streamlit as st # model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-sd-vae", safety_checker=None, torch_dtype=torch.float32).to("cuda") # pipe = DiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-sd-vae", safety_checker=None, torch_dtype=torch.float32).to("cuda") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() g_cuda = None FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) app = Flask(__name__) # @app.route("/", methods=["POST"]) def generate(): # prompt = request.form['prompt'] # negative_prompt = request.form['Negative prompt'] # num_samples = request.form['No. of samples'] prompt = st.text_area(label = "prompt", key="pmpt") negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt") num_samples = st.number_input("No. of samples") res = st.button("Generate", type="primary") if res: guidance_scale = 7.5 num_inference_steps = 24 height = 512 width = 512 g_cuda = torch.Generator(device='cuda') seed = 52362 g_cuda.manual_seed(seed) # commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half") with autocast("cuda"), torch.inference_mode(): images = pipe( prompt, height=height, width=width, negative_prompt=negative_prompt, num_images_per_prompt=num_samples, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=g_cuda ).images return {"message": "successful"} else: st.write('') # driver function if __name__ == '__main__': generate()