Spaces:
Runtime error
Runtime error
File size: 1,084 Bytes
d2686f5 4510960 d2686f5 88549e6 4510960 4c24f50 d2686f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from transformers import pipeline
# Load the model using pipeline
pipe = pipeline("audio-classification", model="MelodyMachine/Deepfake-audio-detection-V2")
# Define the prediction function
def predict(audio):
print("Audio file received:", audio) # Debugging statement
try:
result = pipe(audio)
print("Raw prediction result:", result) # Debugging statement
# Convert the result to the expected format
output = {item['label']: item['score'] for item in result}
print("Formatted prediction result:", output) # Debugging statement
return output
except Exception as e:
print("Error during prediction:", e) # Debugging statement
return {"error": str(e)}
# Create the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Audio(type="filepath"),
outputs=gr.Label(),
title="Testing Deepfake Audio Detection Simple Interface",
description="Upload an audio file or record your voice to detect if the audio is a deepfake."
)
# Launch the interface
iface.launch()
|