|
echo "PYTHONPATH: ${PYTHONPATH}" |
|
which_python=$(which python) |
|
echo "which python: ${which_python}" |
|
export PYTHONPATH=${PYTHONPATH}:${which_python} |
|
export PYTHONPATH=${PYTHONPATH}:. |
|
echo "PYTHONPATH: ${PYTHONPATH}" |
|
|
|
OUTPUT_DIR=./pllava_video_outputs/test_train_7b_reconstruct |
|
|
|
pooling_shape=(16,12,12) |
|
num_save_samples=80000 |
|
num_gpus=8 |
|
full_batch_size=128 |
|
batch_size=8 |
|
save_steps=$[$num_save_samples/($batch_size*$num_gpus)] |
|
ckpt_steps=$[$save_steps/10] |
|
gradient_accumulation_steps=$[$full_batch_size/($batch_size*$num_gpus)] |
|
echo $batch_size |
|
echo $gradient_accumulation_steps |
|
repo_id=llava-hf/llava-v1.6-vicuna-7b-hf |
|
accelerate launch --main_process_port 6876 --config_file scripts/accel_config_multigpu.yaml tasks/train/train_pllava_nframe_accel.py \ |
|
tasks/train/config_pllava_nframe.py \ |
|
output_dir ${OUTPUT_DIR} \ |
|
train_corpus videochat2_instruction_debug \ |
|
save_steps $save_steps \ |
|
ckpt_steps $ckpt_steps \ |
|
num_workers 8 \ |
|
num_frames 16 \ |
|
gradient_accumulation_steps $gradient_accumulation_steps \ |
|
batch_size $batch_size \ |
|
model.pooling_method avg \ |
|
model.use_lora True \ |
|
model.use_pooling True \ |
|
model.repo_id $repo_id \ |
|
gradient_checkpointing True \ |
|
preprocess.center_pad False \ |
|
preprocess.clip_transform False \ |
|
optimizer.lr 2e-5 \ |
|
scheduler.epochs 3 \ |
|
scheduler.warmup_ratio 0.2 \ |
|
scheduler.min_lr_multi 0.25 \ |
|
model.pooling_shape $pooling_shape \ |
|
scheduler.is_videochat2_custom True \ |
|
preprocess.mm_alone False \ |
|
preprocess.random_shuffle False \ |
|
preprocess.add_second_msg False |
|
|
|
|
|
|
|
|