DipendraStha commited on
Commit
206cb61
·
verified ·
1 Parent(s): 9b4fb00

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +35 -39
src/streamlit_app.py CHANGED
@@ -1,40 +1,36 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
- import streamlit as st
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
1
 
2
+ import os
3
+ os.environ["MPLCONFIGDIR"] = "/tmp" # Prevent matplotlib config errors
4
+ os.environ["STREAMLIT_BROWSER_GATHER_USAGE_STATS"] = "false"
5
+ os.environ["STREAMLIT_SERVER_HEADLESS"] = "true"
6
+
7
+ import streamlit as st
8
+ from transformers import AutoTokenizer, AutoModelForCausalLM
9
+ import torch
10
+
11
+ # Title and UI
12
+ st.set_page_config(page_title="DeepSeek-R1 Chatbot", page_icon="🤖")
13
+ st.title("🧠 DeepSeek-R1 CPU Chatbot")
14
+ st.caption("Running entirely on CPU using Hugging Face Transformers")
15
+
16
+ # Load the model and tokenizer
17
+ @st.cache_resource
18
+ def load_model():
19
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
20
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-1.3B-base")
21
+ return tokenizer, model
22
+
23
+
24
+ tokenizer, model = load_model()
25
+
26
+ # Prompt input
27
+ user_input = st.text_area("📥 Enter your prompt here:", "Explain what a neural network is.")
28
+
29
+ if st.button("🧠 Generate Response"):
30
+ with st.spinner("Thinking..."):
31
+ inputs = tokenizer(user_input, return_tensors="pt")
32
+ outputs = model.generate(**inputs, max_new_tokens=100)
33
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
34
+
35
+ st.markdown("### 🤖 Response:")
36
+ st.write(response)