Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| from PIL import Image | |
| import tensorflow.keras as keras | |
| import keras.applications.xception as xception | |
| from tensorflow.keras.models import load_model | |
| # load model | |
| model = load_model('model804.h5') | |
| classnames = ['battery','cardboard','clothes','food','glass','medical','metal','paper','plastic','shoes'] | |
| def predict_image(img): | |
| img_4d=img.reshape(-1,320, 320,3) | |
| prediction=model.predict(img_4d)[0] | |
| return {classnames[i]: float(prediction[i]) for i in range(10)} | |
| image = gr.inputs.Image(shape=(320, 320)) | |
| label = gr.outputs.Label(num_top_classes=3) | |
| enable_queue=True | |
| examples = ['battery.jpg','cardboard.jpeg','clothes.jpeg','glass.jpg','metal.jpg','plastic.jpg','shoes.jpg'] | |
| article="<p style='text-align: center'>Made by Aditya Narendra with 🖤</p>" | |
| gr.Interface(fn=predict_image, inputs=image, title="Garbage Classifier", | |
| description="This is a Garbage Classification Model Trained using Xception Net on DS11 Mod(Seg10 V4).Deployed to Hugging Faces using Gradio.",outputs=label,article=article,enable_queue=enable_queue,examples=examples,interpretation='default').launch(share="True") | 
