|
import argparse |
|
|
|
import torch |
|
from torch.nn import functional as F |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
import lpips |
|
from model import Generator |
|
|
|
|
|
def normalize(x): |
|
return x / torch.sqrt(x.pow(2).sum(-1, keepdim=True)) |
|
|
|
|
|
def slerp(a, b, t): |
|
a = normalize(a) |
|
b = normalize(b) |
|
d = (a * b).sum(-1, keepdim=True) |
|
p = t * torch.acos(d) |
|
c = normalize(b - d * a) |
|
d = a * torch.cos(p) + c * torch.sin(p) |
|
|
|
return normalize(d) |
|
|
|
|
|
def lerp(a, b, t): |
|
return a + (b - a) * t |
|
|
|
|
|
if __name__ == '__main__': |
|
device = 'cuda' |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--space', choices=['z', 'w']) |
|
parser.add_argument('--batch', type=int, default=64) |
|
parser.add_argument('--n_sample', type=int, default=5000) |
|
parser.add_argument('--size', type=int, default=256) |
|
parser.add_argument('--eps', type=float, default=1e-4) |
|
parser.add_argument('--crop', action='store_true') |
|
parser.add_argument('ckpt', metavar='CHECKPOINT') |
|
|
|
args = parser.parse_args() |
|
|
|
latent_dim = 512 |
|
|
|
ckpt = torch.load(args.ckpt) |
|
|
|
g = Generator(args.size, latent_dim, 8).to(device) |
|
g.load_state_dict(ckpt['g_ema']) |
|
g.eval() |
|
|
|
percept = lpips.PerceptualLoss( |
|
model='net-lin', net='vgg', use_gpu=device.startswith('cuda') |
|
) |
|
|
|
distances = [] |
|
|
|
n_batch = args.n_sample // args.batch |
|
resid = args.n_sample - (n_batch * args.batch) |
|
batch_sizes = [args.batch] * n_batch + [resid] |
|
|
|
with torch.no_grad(): |
|
for batch in tqdm(batch_sizes): |
|
noise = g.make_noise() |
|
|
|
inputs = torch.randn([batch * 2, latent_dim], device=device) |
|
lerp_t = torch.rand(batch, device=device) |
|
|
|
if args.space == 'w': |
|
latent = g.get_latent(inputs) |
|
latent_t0, latent_t1 = latent[::2], latent[1::2] |
|
latent_e0 = lerp(latent_t0, latent_t1, lerp_t[:, None]) |
|
latent_e1 = lerp(latent_t0, latent_t1, lerp_t[:, None] + args.eps) |
|
latent_e = torch.stack([latent_e0, latent_e1], 1).view(*latent.shape) |
|
|
|
image, _ = g([latent_e], input_is_latent=True, noise=noise) |
|
|
|
if args.crop: |
|
c = image.shape[2] // 8 |
|
image = image[:, :, c * 3 : c * 7, c * 2 : c * 6] |
|
|
|
factor = image.shape[2] // 256 |
|
|
|
if factor > 1: |
|
image = F.interpolate( |
|
image, size=(256, 256), mode='bilinear', align_corners=False |
|
) |
|
|
|
dist = percept(image[::2], image[1::2]).view(image.shape[0] // 2) / ( |
|
args.eps ** 2 |
|
) |
|
distances.append(dist.to('cpu').numpy()) |
|
|
|
distances = np.concatenate(distances, 0) |
|
|
|
lo = np.percentile(distances, 1, interpolation='lower') |
|
hi = np.percentile(distances, 99, interpolation='higher') |
|
filtered_dist = np.extract( |
|
np.logical_and(lo <= distances, distances <= hi), distances |
|
) |
|
|
|
print('ppl:', filtered_dist.mean()) |
|
|