Spaces:
Runtime error
Runtime error
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. | |
# | |
# This work is licensed under the Creative Commons Attribution-NonCommercial | |
# 4.0 International License. To view a copy of this license, visit | |
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to | |
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. | |
"""Helper wrapper for a Tensorflow optimizer.""" | |
import numpy as np | |
import tensorflow as tf | |
from collections import OrderedDict | |
from typing import List, Union | |
from . import autosummary | |
from . import tfutil | |
from .. import util | |
from .tfutil import TfExpression, TfExpressionEx | |
try: | |
# TensorFlow 1.13 | |
from tensorflow.python.ops import nccl_ops | |
except: | |
# Older TensorFlow versions | |
import tensorflow.contrib.nccl as nccl_ops | |
class Optimizer: | |
"""A Wrapper for tf.train.Optimizer. | |
Automatically takes care of: | |
- Gradient averaging for multi-GPU training. | |
- Dynamic loss scaling and typecasts for FP16 training. | |
- Ignoring corrupted gradients that contain NaNs/Infs. | |
- Reporting statistics. | |
- Well-chosen default settings. | |
""" | |
def __init__(self, | |
name: str = "Train", | |
tf_optimizer: str = "tf.train.AdamOptimizer", | |
learning_rate: TfExpressionEx = 0.001, | |
use_loss_scaling: bool = False, | |
loss_scaling_init: float = 64.0, | |
loss_scaling_inc: float = 0.0005, | |
loss_scaling_dec: float = 1.0, | |
**kwargs): | |
# Init fields. | |
self.name = name | |
self.learning_rate = tf.convert_to_tensor(learning_rate) | |
self.id = self.name.replace("/", ".") | |
self.scope = tf.get_default_graph().unique_name(self.id) | |
self.optimizer_class = util.get_obj_by_name(tf_optimizer) | |
self.optimizer_kwargs = dict(kwargs) | |
self.use_loss_scaling = use_loss_scaling | |
self.loss_scaling_init = loss_scaling_init | |
self.loss_scaling_inc = loss_scaling_inc | |
self.loss_scaling_dec = loss_scaling_dec | |
self._grad_shapes = None # [shape, ...] | |
self._dev_opt = OrderedDict() # device => optimizer | |
self._dev_grads = OrderedDict() # device => [[(grad, var), ...], ...] | |
self._dev_ls_var = OrderedDict() # device => variable (log2 of loss scaling factor) | |
self._updates_applied = False | |
def register_gradients(self, loss: TfExpression, trainable_vars: Union[List, dict]) -> None: | |
"""Register the gradients of the given loss function with respect to the given variables. | |
Intended to be called once per GPU.""" | |
assert not self._updates_applied | |
# Validate arguments. | |
if isinstance(trainable_vars, dict): | |
trainable_vars = list(trainable_vars.values()) # allow passing in Network.trainables as vars | |
assert isinstance(trainable_vars, list) and len(trainable_vars) >= 1 | |
assert all(tfutil.is_tf_expression(expr) for expr in trainable_vars + [loss]) | |
if self._grad_shapes is None: | |
self._grad_shapes = [tfutil.shape_to_list(var.shape) for var in trainable_vars] | |
assert len(trainable_vars) == len(self._grad_shapes) | |
assert all(tfutil.shape_to_list(var.shape) == var_shape for var, var_shape in zip(trainable_vars, self._grad_shapes)) | |
dev = loss.device | |
assert all(var.device == dev for var in trainable_vars) | |
# Register device and compute gradients. | |
with tf.name_scope(self.id + "_grad"), tf.device(dev): | |
if dev not in self._dev_opt: | |
opt_name = self.scope.replace("/", "_") + "_opt%d" % len(self._dev_opt) | |
assert callable(self.optimizer_class) | |
self._dev_opt[dev] = self.optimizer_class(name=opt_name, learning_rate=self.learning_rate, **self.optimizer_kwargs) | |
self._dev_grads[dev] = [] | |
loss = self.apply_loss_scaling(tf.cast(loss, tf.float32)) | |
grads = self._dev_opt[dev].compute_gradients(loss, trainable_vars, gate_gradients=tf.train.Optimizer.GATE_NONE) # disable gating to reduce memory usage | |
grads = [(g, v) if g is not None else (tf.zeros_like(v), v) for g, v in grads] # replace disconnected gradients with zeros | |
self._dev_grads[dev].append(grads) | |
def apply_updates(self) -> tf.Operation: | |
"""Construct training op to update the registered variables based on their gradients.""" | |
tfutil.assert_tf_initialized() | |
assert not self._updates_applied | |
self._updates_applied = True | |
devices = list(self._dev_grads.keys()) | |
total_grads = sum(len(grads) for grads in self._dev_grads.values()) | |
assert len(devices) >= 1 and total_grads >= 1 | |
ops = [] | |
with tfutil.absolute_name_scope(self.scope): | |
# Cast gradients to FP32 and calculate partial sum within each device. | |
dev_grads = OrderedDict() # device => [(grad, var), ...] | |
for dev_idx, dev in enumerate(devices): | |
with tf.name_scope("ProcessGrads%d" % dev_idx), tf.device(dev): | |
sums = [] | |
for gv in zip(*self._dev_grads[dev]): | |
assert all(v is gv[0][1] for g, v in gv) | |
g = [tf.cast(g, tf.float32) for g, v in gv] | |
g = g[0] if len(g) == 1 else tf.add_n(g) | |
sums.append((g, gv[0][1])) | |
dev_grads[dev] = sums | |
# Sum gradients across devices. | |
if len(devices) > 1: | |
with tf.name_scope("SumAcrossGPUs"), tf.device(None): | |
for var_idx, grad_shape in enumerate(self._grad_shapes): | |
g = [dev_grads[dev][var_idx][0] for dev in devices] | |
if np.prod(grad_shape): # nccl does not support zero-sized tensors | |
g = nccl_ops.all_sum(g) | |
for dev, gg in zip(devices, g): | |
dev_grads[dev][var_idx] = (gg, dev_grads[dev][var_idx][1]) | |
# Apply updates separately on each device. | |
for dev_idx, (dev, grads) in enumerate(dev_grads.items()): | |
with tf.name_scope("ApplyGrads%d" % dev_idx), tf.device(dev): | |
# Scale gradients as needed. | |
if self.use_loss_scaling or total_grads > 1: | |
with tf.name_scope("Scale"): | |
coef = tf.constant(np.float32(1.0 / total_grads), name="coef") | |
coef = self.undo_loss_scaling(coef) | |
grads = [(g * coef, v) for g, v in grads] | |
# Check for overflows. | |
with tf.name_scope("CheckOverflow"): | |
grad_ok = tf.reduce_all(tf.stack([tf.reduce_all(tf.is_finite(g)) for g, v in grads])) | |
# Update weights and adjust loss scaling. | |
with tf.name_scope("UpdateWeights"): | |
# pylint: disable=cell-var-from-loop | |
opt = self._dev_opt[dev] | |
ls_var = self.get_loss_scaling_var(dev) | |
if not self.use_loss_scaling: | |
ops.append(tf.cond(grad_ok, lambda: opt.apply_gradients(grads), tf.no_op)) | |
else: | |
ops.append(tf.cond(grad_ok, | |
lambda: tf.group(tf.assign_add(ls_var, self.loss_scaling_inc), opt.apply_gradients(grads)), | |
lambda: tf.group(tf.assign_sub(ls_var, self.loss_scaling_dec)))) | |
# Report statistics on the last device. | |
if dev == devices[-1]: | |
with tf.name_scope("Statistics"): | |
ops.append(autosummary.autosummary(self.id + "/learning_rate", self.learning_rate)) | |
ops.append(autosummary.autosummary(self.id + "/overflow_frequency", tf.where(grad_ok, 0, 1))) | |
if self.use_loss_scaling: | |
ops.append(autosummary.autosummary(self.id + "/loss_scaling_log2", ls_var)) | |
# Initialize variables and group everything into a single op. | |
self.reset_optimizer_state() | |
tfutil.init_uninitialized_vars(list(self._dev_ls_var.values())) | |
return tf.group(*ops, name="TrainingOp") | |
def reset_optimizer_state(self) -> None: | |
"""Reset internal state of the underlying optimizer.""" | |
tfutil.assert_tf_initialized() | |
tfutil.run([var.initializer for opt in self._dev_opt.values() for var in opt.variables()]) | |
def get_loss_scaling_var(self, device: str) -> Union[tf.Variable, None]: | |
"""Get or create variable representing log2 of the current dynamic loss scaling factor.""" | |
if not self.use_loss_scaling: | |
return None | |
if device not in self._dev_ls_var: | |
with tfutil.absolute_name_scope(self.scope + "/LossScalingVars"), tf.control_dependencies(None): | |
self._dev_ls_var[device] = tf.Variable(np.float32(self.loss_scaling_init), name="loss_scaling_var") | |
return self._dev_ls_var[device] | |
def apply_loss_scaling(self, value: TfExpression) -> TfExpression: | |
"""Apply dynamic loss scaling for the given expression.""" | |
assert tfutil.is_tf_expression(value) | |
if not self.use_loss_scaling: | |
return value | |
return value * tfutil.exp2(self.get_loss_scaling_var(value.device)) | |
def undo_loss_scaling(self, value: TfExpression) -> TfExpression: | |
"""Undo the effect of dynamic loss scaling for the given expression.""" | |
assert tfutil.is_tf_expression(value) | |
if not self.use_loss_scaling: | |
return value | |
return value * tfutil.exp2(-self.get_loss_scaling_var(value.device)) # pylint: disable=invalid-unary-operand-type | |