Spaces:
Runtime error
Runtime error
File size: 33,391 Bytes
7575eee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Network architectures used in the StyleGAN paper."""
import numpy as np
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib
# NOTE: Do not import any application-specific modules here!
# Specify all network parameters as kwargs.
#----------------------------------------------------------------------------
# Primitive ops for manipulating 4D activation tensors.
# The gradients of these are not necessary efficient or even meaningful.
def _blur2d(x, f=[1,2,1], normalize=True, flip=False, stride=1):
assert x.shape.ndims == 4 and all(dim.value is not None for dim in x.shape[1:])
assert isinstance(stride, int) and stride >= 1
# Finalize filter kernel.
f = np.array(f, dtype=np.float32)
if f.ndim == 1:
f = f[:, np.newaxis] * f[np.newaxis, :]
assert f.ndim == 2
if normalize:
f /= np.sum(f)
if flip:
f = f[::-1, ::-1]
f = f[:, :, np.newaxis, np.newaxis]
f = np.tile(f, [1, 1, int(x.shape[1]), 1])
# No-op => early exit.
if f.shape == (1, 1) and f[0,0] == 1:
return x
# Convolve using depthwise_conv2d.
orig_dtype = x.dtype
x = tf.cast(x, tf.float32) # tf.nn.depthwise_conv2d() doesn't support fp16
f = tf.constant(f, dtype=x.dtype, name='filter')
strides = [1, 1, stride, stride]
x = tf.nn.depthwise_conv2d(x, f, strides=strides, padding='SAME', data_format='NCHW')
x = tf.cast(x, orig_dtype)
return x
def _upscale2d(x, factor=2, gain=1):
assert x.shape.ndims == 4 and all(dim.value is not None for dim in x.shape[1:])
assert isinstance(factor, int) and factor >= 1
# Apply gain.
if gain != 1:
x *= gain
# No-op => early exit.
if factor == 1:
return x
# Upscale using tf.tile().
s = x.shape
x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
x = tf.tile(x, [1, 1, 1, factor, 1, factor])
x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
return x
def _downscale2d(x, factor=2, gain=1):
assert x.shape.ndims == 4 and all(dim.value is not None for dim in x.shape[1:])
assert isinstance(factor, int) and factor >= 1
# 2x2, float32 => downscale using _blur2d().
if factor == 2 and x.dtype == tf.float32:
f = [np.sqrt(gain) / factor] * factor
return _blur2d(x, f=f, normalize=False, stride=factor)
# Apply gain.
if gain != 1:
x *= gain
# No-op => early exit.
if factor == 1:
return x
# Large factor => downscale using tf.nn.avg_pool().
# NOTE: Requires tf_config['graph_options.place_pruned_graph']=True to work.
ksize = [1, 1, factor, factor]
return tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding='VALID', data_format='NCHW')
#----------------------------------------------------------------------------
# High-level ops for manipulating 4D activation tensors.
# The gradients of these are meant to be as efficient as possible.
def blur2d(x, f=[1,2,1], normalize=True):
with tf.variable_scope('Blur2D'):
@tf.custom_gradient
def func(x):
y = _blur2d(x, f, normalize)
@tf.custom_gradient
def grad(dy):
dx = _blur2d(dy, f, normalize, flip=True)
return dx, lambda ddx: _blur2d(ddx, f, normalize)
return y, grad
return func(x)
def upscale2d(x, factor=2):
with tf.variable_scope('Upscale2D'):
@tf.custom_gradient
def func(x):
y = _upscale2d(x, factor)
@tf.custom_gradient
def grad(dy):
dx = _downscale2d(dy, factor, gain=factor**2)
return dx, lambda ddx: _upscale2d(ddx, factor)
return y, grad
return func(x)
def downscale2d(x, factor=2):
with tf.variable_scope('Downscale2D'):
@tf.custom_gradient
def func(x):
y = _downscale2d(x, factor)
@tf.custom_gradient
def grad(dy):
dx = _upscale2d(dy, factor, gain=1/factor**2)
return dx, lambda ddx: _downscale2d(ddx, factor)
return y, grad
return func(x)
#----------------------------------------------------------------------------
# Get/create weight tensor for a convolutional or fully-connected layer.
def get_weight(shape, gain=np.sqrt(2), use_wscale=False, lrmul=1):
fan_in = np.prod(shape[:-1]) # [kernel, kernel, fmaps_in, fmaps_out] or [in, out]
he_std = gain / np.sqrt(fan_in) # He init
# Equalized learning rate and custom learning rate multiplier.
if use_wscale:
init_std = 1.0 / lrmul
runtime_coef = he_std * lrmul
else:
init_std = he_std / lrmul
runtime_coef = lrmul
# Create variable.
init = tf.initializers.random_normal(0, init_std)
return tf.get_variable('weight', shape=shape, initializer=init) * runtime_coef
#----------------------------------------------------------------------------
# Fully-connected layer.
def dense(x, fmaps, **kwargs):
if len(x.shape) > 2:
x = tf.reshape(x, [-1, np.prod([d.value for d in x.shape[1:]])])
w = get_weight([x.shape[1].value, fmaps], **kwargs)
w = tf.cast(w, x.dtype)
return tf.matmul(x, w)
#----------------------------------------------------------------------------
# Convolutional layer.
def conv2d(x, fmaps, kernel, **kwargs):
assert kernel >= 1 and kernel % 2 == 1
w = get_weight([kernel, kernel, x.shape[1].value, fmaps], **kwargs)
w = tf.cast(w, x.dtype)
return tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='SAME', data_format='NCHW')
#----------------------------------------------------------------------------
# Fused convolution + scaling.
# Faster and uses less memory than performing the operations separately.
def upscale2d_conv2d(x, fmaps, kernel, fused_scale='auto', **kwargs):
assert kernel >= 1 and kernel % 2 == 1
assert fused_scale in [True, False, 'auto']
if fused_scale == 'auto':
fused_scale = min(x.shape[2:]) * 2 >= 128
# Not fused => call the individual ops directly.
if not fused_scale:
return conv2d(upscale2d(x), fmaps, kernel, **kwargs)
# Fused => perform both ops simultaneously using tf.nn.conv2d_transpose().
w = get_weight([kernel, kernel, x.shape[1].value, fmaps], **kwargs)
w = tf.transpose(w, [0, 1, 3, 2]) # [kernel, kernel, fmaps_out, fmaps_in]
w = tf.pad(w, [[1,1], [1,1], [0,0], [0,0]], mode='CONSTANT')
w = tf.add_n([w[1:, 1:], w[:-1, 1:], w[1:, :-1], w[:-1, :-1]])
w = tf.cast(w, x.dtype)
os = [tf.shape(x)[0], fmaps, x.shape[2] * 2, x.shape[3] * 2]
return tf.nn.conv2d_transpose(x, w, os, strides=[1,1,2,2], padding='SAME', data_format='NCHW')
def conv2d_downscale2d(x, fmaps, kernel, fused_scale='auto', **kwargs):
assert kernel >= 1 and kernel % 2 == 1
assert fused_scale in [True, False, 'auto']
if fused_scale == 'auto':
fused_scale = min(x.shape[2:]) >= 128
# Not fused => call the individual ops directly.
if not fused_scale:
return downscale2d(conv2d(x, fmaps, kernel, **kwargs))
# Fused => perform both ops simultaneously using tf.nn.conv2d().
w = get_weight([kernel, kernel, x.shape[1].value, fmaps], **kwargs)
w = tf.pad(w, [[1,1], [1,1], [0,0], [0,0]], mode='CONSTANT')
w = tf.add_n([w[1:, 1:], w[:-1, 1:], w[1:, :-1], w[:-1, :-1]]) * 0.25
w = tf.cast(w, x.dtype)
return tf.nn.conv2d(x, w, strides=[1,1,2,2], padding='SAME', data_format='NCHW')
#----------------------------------------------------------------------------
# Apply bias to the given activation tensor.
def apply_bias(x, lrmul=1):
b = tf.get_variable('bias', shape=[x.shape[1]], initializer=tf.initializers.zeros()) * lrmul
b = tf.cast(b, x.dtype)
if len(x.shape) == 2:
return x + b
return x + tf.reshape(b, [1, -1, 1, 1])
#----------------------------------------------------------------------------
# Leaky ReLU activation. More efficient than tf.nn.leaky_relu() and supports FP16.
def leaky_relu(x, alpha=0.2):
with tf.variable_scope('LeakyReLU'):
alpha = tf.constant(alpha, dtype=x.dtype, name='alpha')
@tf.custom_gradient
def func(x):
y = tf.maximum(x, x * alpha)
@tf.custom_gradient
def grad(dy):
dx = tf.where(y >= 0, dy, dy * alpha)
return dx, lambda ddx: tf.where(y >= 0, ddx, ddx * alpha)
return y, grad
return func(x)
#----------------------------------------------------------------------------
# Pixelwise feature vector normalization.
def pixel_norm(x, epsilon=1e-8):
with tf.variable_scope('PixelNorm'):
epsilon = tf.constant(epsilon, dtype=x.dtype, name='epsilon')
return x * tf.rsqrt(tf.reduce_mean(tf.square(x), axis=1, keepdims=True) + epsilon)
#----------------------------------------------------------------------------
# Instance normalization.
def instance_norm(x, epsilon=1e-8):
assert len(x.shape) == 4 # NCHW
with tf.variable_scope('InstanceNorm'):
orig_dtype = x.dtype
x = tf.cast(x, tf.float32)
x -= tf.reduce_mean(x, axis=[2,3], keepdims=True)
epsilon = tf.constant(epsilon, dtype=x.dtype, name='epsilon')
x *= tf.rsqrt(tf.reduce_mean(tf.square(x), axis=[2,3], keepdims=True) + epsilon)
x = tf.cast(x, orig_dtype)
return x
#----------------------------------------------------------------------------
# Style modulation.
def style_mod(x, dlatent, **kwargs):
with tf.variable_scope('StyleMod'):
style = apply_bias(dense(dlatent, fmaps=x.shape[1]*2, gain=1, **kwargs))
style = tf.reshape(style, [-1, 2, x.shape[1]] + [1] * (len(x.shape) - 2))
return x * (style[:,0] + 1) + style[:,1]
#----------------------------------------------------------------------------
# Noise input.
def apply_noise(x, noise_var=None, randomize_noise=True):
assert len(x.shape) == 4 # NCHW
with tf.variable_scope('Noise'):
if noise_var is None or randomize_noise:
noise = tf.random_normal([tf.shape(x)[0], 1, x.shape[2], x.shape[3]], dtype=x.dtype)
else:
noise = tf.cast(noise_var, x.dtype)
weight = tf.get_variable('weight', shape=[x.shape[1].value], initializer=tf.initializers.zeros())
return x + noise * tf.reshape(tf.cast(weight, x.dtype), [1, -1, 1, 1])
#----------------------------------------------------------------------------
# Minibatch standard deviation.
def minibatch_stddev_layer(x, group_size=4, num_new_features=1):
with tf.variable_scope('MinibatchStddev'):
group_size = tf.minimum(group_size, tf.shape(x)[0]) # Minibatch must be divisible by (or smaller than) group_size.
s = x.shape # [NCHW] Input shape.
y = tf.reshape(x, [group_size, -1, num_new_features, s[1]//num_new_features, s[2], s[3]]) # [GMncHW] Split minibatch into M groups of size G. Split channels into n channel groups c.
y = tf.cast(y, tf.float32) # [GMncHW] Cast to FP32.
y -= tf.reduce_mean(y, axis=0, keepdims=True) # [GMncHW] Subtract mean over group.
y = tf.reduce_mean(tf.square(y), axis=0) # [MncHW] Calc variance over group.
y = tf.sqrt(y + 1e-8) # [MncHW] Calc stddev over group.
y = tf.reduce_mean(y, axis=[2,3,4], keepdims=True) # [Mn111] Take average over fmaps and pixels.
y = tf.reduce_mean(y, axis=[2]) # [Mn11] Split channels into c channel groups
y = tf.cast(y, x.dtype) # [Mn11] Cast back to original data type.
y = tf.tile(y, [group_size, 1, s[2], s[3]]) # [NnHW] Replicate over group and pixels.
return tf.concat([x, y], axis=1) # [NCHW] Append as new fmap.
#----------------------------------------------------------------------------
# Style-based generator used in the StyleGAN paper.
# Composed of two sub-networks (G_mapping and G_synthesis) that are defined below.
def G_style(
latents_in, # First input: Latent vectors (Z) [minibatch, latent_size].
labels_in, # Second input: Conditioning labels [minibatch, label_size].
truncation_psi = 0.7, # Style strength multiplier for the truncation trick. None = disable.
truncation_cutoff = 8, # Number of layers for which to apply the truncation trick. None = disable.
truncation_psi_val = None, # Value for truncation_psi to use during validation.
truncation_cutoff_val = None, # Value for truncation_cutoff to use during validation.
dlatent_avg_beta = 0.995, # Decay for tracking the moving average of W during training. None = disable.
style_mixing_prob = 0.9, # Probability of mixing styles during training. None = disable.
is_training = False, # Network is under training? Enables and disables specific features.
is_validation = False, # Network is under validation? Chooses which value to use for truncation_psi.
is_template_graph = False, # True = template graph constructed by the Network class, False = actual evaluation.
components = dnnlib.EasyDict(), # Container for sub-networks. Retained between calls.
**kwargs): # Arguments for sub-networks (G_mapping and G_synthesis).
# Validate arguments.
assert not is_training or not is_validation
assert isinstance(components, dnnlib.EasyDict)
if is_validation:
truncation_psi = truncation_psi_val
truncation_cutoff = truncation_cutoff_val
if is_training or (truncation_psi is not None and not tflib.is_tf_expression(truncation_psi) and truncation_psi == 1):
truncation_psi = None
if is_training or (truncation_cutoff is not None and not tflib.is_tf_expression(truncation_cutoff) and truncation_cutoff <= 0):
truncation_cutoff = None
if not is_training or (dlatent_avg_beta is not None and not tflib.is_tf_expression(dlatent_avg_beta) and dlatent_avg_beta == 1):
dlatent_avg_beta = None
if not is_training or (style_mixing_prob is not None and not tflib.is_tf_expression(style_mixing_prob) and style_mixing_prob <= 0):
style_mixing_prob = None
# Setup components.
if 'synthesis' not in components:
components.synthesis = tflib.Network('G_synthesis', func_name=G_synthesis, **kwargs)
num_layers = components.synthesis.input_shape[1]
dlatent_size = components.synthesis.input_shape[2]
if 'mapping' not in components:
components.mapping = tflib.Network('G_mapping', func_name=G_mapping, dlatent_broadcast=num_layers, **kwargs)
# Setup variables.
lod_in = tf.get_variable('lod', initializer=np.float32(0), trainable=False)
dlatent_avg = tf.get_variable('dlatent_avg', shape=[dlatent_size], initializer=tf.initializers.zeros(), trainable=False)
# Evaluate mapping network.
dlatents = components.mapping.get_output_for(latents_in, labels_in, **kwargs)
# Update moving average of W.
if dlatent_avg_beta is not None:
with tf.variable_scope('DlatentAvg'):
batch_avg = tf.reduce_mean(dlatents[:, 0], axis=0)
update_op = tf.assign(dlatent_avg, tflib.lerp(batch_avg, dlatent_avg, dlatent_avg_beta))
with tf.control_dependencies([update_op]):
dlatents = tf.identity(dlatents)
# Perform style mixing regularization.
if style_mixing_prob is not None:
with tf.name_scope('StyleMix'):
latents2 = tf.random_normal(tf.shape(latents_in))
dlatents2 = components.mapping.get_output_for(latents2, labels_in, **kwargs)
layer_idx = np.arange(num_layers)[np.newaxis, :, np.newaxis]
cur_layers = num_layers - tf.cast(lod_in, tf.int32) * 2
mixing_cutoff = tf.cond(
tf.random_uniform([], 0.0, 1.0) < style_mixing_prob,
lambda: tf.random_uniform([], 1, cur_layers, dtype=tf.int32),
lambda: cur_layers)
dlatents = tf.where(tf.broadcast_to(layer_idx < mixing_cutoff, tf.shape(dlatents)), dlatents, dlatents2)
# Apply truncation trick.
if truncation_psi is not None and truncation_cutoff is not None:
with tf.variable_scope('Truncation'):
layer_idx = np.arange(num_layers)[np.newaxis, :, np.newaxis]
ones = np.ones(layer_idx.shape, dtype=np.float32)
coefs = tf.where(layer_idx < truncation_cutoff, truncation_psi * ones, ones)
dlatents = tflib.lerp(dlatent_avg, dlatents, coefs)
# Evaluate synthesis network.
with tf.control_dependencies([tf.assign(components.synthesis.find_var('lod'), lod_in)]):
images_out = components.synthesis.get_output_for(dlatents, force_clean_graph=is_template_graph, **kwargs)
return tf.identity(images_out, name='images_out')
#----------------------------------------------------------------------------
# Mapping network used in the StyleGAN paper.
def G_mapping(
latents_in, # First input: Latent vectors (Z) [minibatch, latent_size].
labels_in, # Second input: Conditioning labels [minibatch, label_size].
latent_size = 512, # Latent vector (Z) dimensionality.
label_size = 0, # Label dimensionality, 0 if no labels.
dlatent_size = 512, # Disentangled latent (W) dimensionality.
dlatent_broadcast = None, # Output disentangled latent (W) as [minibatch, dlatent_size] or [minibatch, dlatent_broadcast, dlatent_size].
mapping_layers = 8, # Number of mapping layers.
mapping_fmaps = 512, # Number of activations in the mapping layers.
mapping_lrmul = 0.01, # Learning rate multiplier for the mapping layers.
mapping_nonlinearity = 'lrelu', # Activation function: 'relu', 'lrelu'.
use_wscale = True, # Enable equalized learning rate?
normalize_latents = True, # Normalize latent vectors (Z) before feeding them to the mapping layers?
dtype = 'float32', # Data type to use for activations and outputs.
**_kwargs): # Ignore unrecognized keyword args.
act, gain = {'relu': (tf.nn.relu, np.sqrt(2)), 'lrelu': (leaky_relu, np.sqrt(2))}[mapping_nonlinearity]
# Inputs.
latents_in.set_shape([None, latent_size])
labels_in.set_shape([None, label_size])
latents_in = tf.cast(latents_in, dtype)
labels_in = tf.cast(labels_in, dtype)
x = latents_in
# Embed labels and concatenate them with latents.
if label_size:
with tf.variable_scope('LabelConcat'):
w = tf.get_variable('weight', shape=[label_size, latent_size], initializer=tf.initializers.random_normal())
y = tf.matmul(labels_in, tf.cast(w, dtype))
x = tf.concat([x, y], axis=1)
# Normalize latents.
if normalize_latents:
x = pixel_norm(x)
# Mapping layers.
for layer_idx in range(mapping_layers):
with tf.variable_scope('Dense%d' % layer_idx):
fmaps = dlatent_size if layer_idx == mapping_layers - 1 else mapping_fmaps
x = dense(x, fmaps=fmaps, gain=gain, use_wscale=use_wscale, lrmul=mapping_lrmul)
x = apply_bias(x, lrmul=mapping_lrmul)
x = act(x)
# Broadcast.
if dlatent_broadcast is not None:
with tf.variable_scope('Broadcast'):
x = tf.tile(x[:, np.newaxis], [1, dlatent_broadcast, 1])
# Output.
assert x.dtype == tf.as_dtype(dtype)
return tf.identity(x, name='dlatents_out')
#----------------------------------------------------------------------------
# Synthesis network used in the StyleGAN paper.
def G_synthesis(
dlatents_in, # Input: Disentangled latents (W) [minibatch, num_layers, dlatent_size].
dlatent_size = 512, # Disentangled latent (W) dimensionality.
num_channels = 3, # Number of output color channels.
resolution = 1024, # Output resolution.
fmap_base = 8192, # Overall multiplier for the number of feature maps.
fmap_decay = 1.0, # log2 feature map reduction when doubling the resolution.
fmap_max = 512, # Maximum number of feature maps in any layer.
use_styles = True, # Enable style inputs?
const_input_layer = True, # First layer is a learned constant?
use_noise = True, # Enable noise inputs?
randomize_noise = True, # True = randomize noise inputs every time (non-deterministic), False = read noise inputs from variables.
nonlinearity = 'lrelu', # Activation function: 'relu', 'lrelu'
use_wscale = True, # Enable equalized learning rate?
use_pixel_norm = False, # Enable pixelwise feature vector normalization?
use_instance_norm = True, # Enable instance normalization?
dtype = 'float32', # Data type to use for activations and outputs.
fused_scale = 'auto', # True = fused convolution + scaling, False = separate ops, 'auto' = decide automatically.
blur_filter = [1,2,1], # Low-pass filter to apply when resampling activations. None = no filtering.
structure = 'auto', # 'fixed' = no progressive growing, 'linear' = human-readable, 'recursive' = efficient, 'auto' = select automatically.
is_template_graph = False, # True = template graph constructed by the Network class, False = actual evaluation.
force_clean_graph = False, # True = construct a clean graph that looks nice in TensorBoard, False = default behavior.
**_kwargs): # Ignore unrecognized keyword args.
resolution_log2 = int(np.log2(resolution))
assert resolution == 2**resolution_log2 and resolution >= 4
def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
def blur(x): return blur2d(x, blur_filter) if blur_filter else x
if is_template_graph: force_clean_graph = True
if force_clean_graph: randomize_noise = False
if structure == 'auto': structure = 'linear' if force_clean_graph else 'recursive'
act, gain = {'relu': (tf.nn.relu, np.sqrt(2)), 'lrelu': (leaky_relu, np.sqrt(2))}[nonlinearity]
num_layers = resolution_log2 * 2 - 2
num_styles = num_layers if use_styles else 1
images_out = None
# Primary inputs.
dlatents_in.set_shape([None, num_styles, dlatent_size])
dlatents_in = tf.cast(dlatents_in, dtype)
lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0), trainable=False), dtype)
# Noise inputs.
noise_inputs = []
if use_noise:
for layer_idx in range(num_layers):
res = layer_idx // 2 + 2
shape = [1, use_noise, 2**res, 2**res]
noise_inputs.append(tf.get_variable('noise%d' % layer_idx, shape=shape, initializer=tf.initializers.random_normal(), trainable=False))
# Things to do at the end of each layer.
def layer_epilogue(x, layer_idx):
if use_noise:
x = apply_noise(x, noise_inputs[layer_idx], randomize_noise=randomize_noise)
x = apply_bias(x)
x = act(x)
if use_pixel_norm:
x = pixel_norm(x)
if use_instance_norm:
x = instance_norm(x)
if use_styles:
x = style_mod(x, dlatents_in[:, layer_idx], use_wscale=use_wscale)
return x
# Early layers.
with tf.variable_scope('4x4'):
if const_input_layer:
with tf.variable_scope('Const'):
x = tf.get_variable('const', shape=[1, nf(1), 4, 4], initializer=tf.initializers.ones())
x = layer_epilogue(tf.tile(tf.cast(x, dtype), [tf.shape(dlatents_in)[0], 1, 1, 1]), 0)
else:
with tf.variable_scope('Dense'):
x = dense(dlatents_in[:, 0], fmaps=nf(1)*16, gain=gain/4, use_wscale=use_wscale) # tweak gain to match the official implementation of Progressing GAN
x = layer_epilogue(tf.reshape(x, [-1, nf(1), 4, 4]), 0)
with tf.variable_scope('Conv'):
x = layer_epilogue(conv2d(x, fmaps=nf(1), kernel=3, gain=gain, use_wscale=use_wscale), 1)
# Building blocks for remaining layers.
def block(res, x): # res = 3..resolution_log2
with tf.variable_scope('%dx%d' % (2**res, 2**res)):
with tf.variable_scope('Conv0_up'):
x = layer_epilogue(blur(upscale2d_conv2d(x, fmaps=nf(res-1), kernel=3, gain=gain, use_wscale=use_wscale, fused_scale=fused_scale)), res*2-4)
with tf.variable_scope('Conv1'):
x = layer_epilogue(conv2d(x, fmaps=nf(res-1), kernel=3, gain=gain, use_wscale=use_wscale), res*2-3)
return x
def torgb(res, x): # res = 2..resolution_log2
lod = resolution_log2 - res
with tf.variable_scope('ToRGB_lod%d' % lod):
return apply_bias(conv2d(x, fmaps=num_channels, kernel=1, gain=1, use_wscale=use_wscale))
# Fixed structure: simple and efficient, but does not support progressive growing.
if structure == 'fixed':
for res in range(3, resolution_log2 + 1):
x = block(res, x)
images_out = torgb(resolution_log2, x)
# Linear structure: simple but inefficient.
if structure == 'linear':
images_out = torgb(2, x)
for res in range(3, resolution_log2 + 1):
lod = resolution_log2 - res
x = block(res, x)
img = torgb(res, x)
images_out = upscale2d(images_out)
with tf.variable_scope('Grow_lod%d' % lod):
images_out = tflib.lerp_clip(img, images_out, lod_in - lod)
# Recursive structure: complex but efficient.
if structure == 'recursive':
def cset(cur_lambda, new_cond, new_lambda):
return lambda: tf.cond(new_cond, new_lambda, cur_lambda)
def grow(x, res, lod):
y = block(res, x)
img = lambda: upscale2d(torgb(res, y), 2**lod)
img = cset(img, (lod_in > lod), lambda: upscale2d(tflib.lerp(torgb(res, y), upscale2d(torgb(res - 1, x)), lod_in - lod), 2**lod))
if lod > 0: img = cset(img, (lod_in < lod), lambda: grow(y, res + 1, lod - 1))
return img()
images_out = grow(x, 3, resolution_log2 - 3)
assert images_out.dtype == tf.as_dtype(dtype)
return tf.identity(images_out, name='images_out')
#----------------------------------------------------------------------------
# Discriminator used in the StyleGAN paper.
def D_basic(
images_in, # First input: Images [minibatch, channel, height, width].
labels_in, # Second input: Labels [minibatch, label_size].
num_channels = 1, # Number of input color channels. Overridden based on dataset.
resolution = 32, # Input resolution. Overridden based on dataset.
label_size = 0, # Dimensionality of the labels, 0 if no labels. Overridden based on dataset.
fmap_base = 8192, # Overall multiplier for the number of feature maps.
fmap_decay = 1.0, # log2 feature map reduction when doubling the resolution.
fmap_max = 512, # Maximum number of feature maps in any layer.
nonlinearity = 'lrelu', # Activation function: 'relu', 'lrelu',
use_wscale = True, # Enable equalized learning rate?
mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, 0 = disable.
mbstd_num_features = 1, # Number of features for the minibatch standard deviation layer.
dtype = 'float32', # Data type to use for activations and outputs.
fused_scale = 'auto', # True = fused convolution + scaling, False = separate ops, 'auto' = decide automatically.
blur_filter = [1,2,1], # Low-pass filter to apply when resampling activations. None = no filtering.
structure = 'auto', # 'fixed' = no progressive growing, 'linear' = human-readable, 'recursive' = efficient, 'auto' = select automatically.
is_template_graph = False, # True = template graph constructed by the Network class, False = actual evaluation.
**_kwargs): # Ignore unrecognized keyword args.
resolution_log2 = int(np.log2(resolution))
assert resolution == 2**resolution_log2 and resolution >= 4
def nf(stage): return min(int(fmap_base / (2.0 ** (stage * fmap_decay))), fmap_max)
def blur(x): return blur2d(x, blur_filter) if blur_filter else x
if structure == 'auto': structure = 'linear' if is_template_graph else 'recursive'
act, gain = {'relu': (tf.nn.relu, np.sqrt(2)), 'lrelu': (leaky_relu, np.sqrt(2))}[nonlinearity]
images_in.set_shape([None, num_channels, resolution, resolution])
labels_in.set_shape([None, label_size])
images_in = tf.cast(images_in, dtype)
labels_in = tf.cast(labels_in, dtype)
lod_in = tf.cast(tf.get_variable('lod', initializer=np.float32(0.0), trainable=False), dtype)
scores_out = None
# Building blocks.
def fromrgb(x, res): # res = 2..resolution_log2
with tf.variable_scope('FromRGB_lod%d' % (resolution_log2 - res)):
return act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=1, gain=gain, use_wscale=use_wscale)))
def block(x, res): # res = 2..resolution_log2
with tf.variable_scope('%dx%d' % (2**res, 2**res)):
if res >= 3: # 8x8 and up
with tf.variable_scope('Conv0'):
x = act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, gain=gain, use_wscale=use_wscale)))
with tf.variable_scope('Conv1_down'):
x = act(apply_bias(conv2d_downscale2d(blur(x), fmaps=nf(res-2), kernel=3, gain=gain, use_wscale=use_wscale, fused_scale=fused_scale)))
else: # 4x4
if mbstd_group_size > 1:
x = minibatch_stddev_layer(x, mbstd_group_size, mbstd_num_features)
with tf.variable_scope('Conv'):
x = act(apply_bias(conv2d(x, fmaps=nf(res-1), kernel=3, gain=gain, use_wscale=use_wscale)))
with tf.variable_scope('Dense0'):
x = act(apply_bias(dense(x, fmaps=nf(res-2), gain=gain, use_wscale=use_wscale)))
with tf.variable_scope('Dense1'):
x = apply_bias(dense(x, fmaps=max(label_size, 1), gain=1, use_wscale=use_wscale))
return x
# Fixed structure: simple and efficient, but does not support progressive growing.
if structure == 'fixed':
x = fromrgb(images_in, resolution_log2)
for res in range(resolution_log2, 2, -1):
x = block(x, res)
scores_out = block(x, 2)
# Linear structure: simple but inefficient.
if structure == 'linear':
img = images_in
x = fromrgb(img, resolution_log2)
for res in range(resolution_log2, 2, -1):
lod = resolution_log2 - res
x = block(x, res)
img = downscale2d(img)
y = fromrgb(img, res - 1)
with tf.variable_scope('Grow_lod%d' % lod):
x = tflib.lerp_clip(x, y, lod_in - lod)
scores_out = block(x, 2)
# Recursive structure: complex but efficient.
if structure == 'recursive':
def cset(cur_lambda, new_cond, new_lambda):
return lambda: tf.cond(new_cond, new_lambda, cur_lambda)
def grow(res, lod):
x = lambda: fromrgb(downscale2d(images_in, 2**lod), res)
if lod > 0: x = cset(x, (lod_in < lod), lambda: grow(res + 1, lod - 1))
x = block(x(), res); y = lambda: x
if res > 2: y = cset(y, (lod_in > lod), lambda: tflib.lerp(x, fromrgb(downscale2d(images_in, 2**(lod+1)), res - 1), lod_in - lod))
return y()
scores_out = grow(2, resolution_log2 - 2)
# Label conditioning from "Which Training Methods for GANs do actually Converge?"
if label_size:
with tf.variable_scope('LabelSwitch'):
scores_out = tf.reduce_sum(scores_out * labels_in, axis=1, keepdims=True)
assert scores_out.dtype == tf.as_dtype(dtype)
scores_out = tf.identity(scores_out, name='scores_out')
return scores_out
#----------------------------------------------------------------------------
|