Spaces:
Sleeping
Sleeping
Add spaces
Browse files
app.py
CHANGED
@@ -68,17 +68,6 @@ def build_text_chunks(text, src_lang, sents_per_chunk):
|
|
68 |
# Append last chunk
|
69 |
if chunk:
|
70 |
chunks.append(chunk)
|
71 |
-
|
72 |
-
# !!! SKIP splitting of text into chunks for now !!!
|
73 |
-
# Might not be reliable for non-European languages.
|
74 |
-
#chunks = [text, ]
|
75 |
-
|
76 |
-
# NOTE: The 'fa' (Persian) model has multiple target languages to choose from.
|
77 |
-
# We need to specifiy the desired languages among: fra ita por ron spa
|
78 |
-
# https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fa-itc
|
79 |
-
# Prepend text with >>fra<< in order to translate in French.
|
80 |
-
if src_lang == 'fa':
|
81 |
-
chunks = [">>fra<< " + chunk for chunk in chunks]
|
82 |
|
83 |
return chunks
|
84 |
|
@@ -93,6 +82,14 @@ def translate_with_model(
|
|
93 |
# Translate chunks
|
94 |
translated_chunks = []
|
95 |
for chunk in chunks:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
inputs = tokenizer(
|
97 |
chunk, return_tensors="pt",
|
98 |
max_length=input_max_length,
|
@@ -112,10 +109,12 @@ def translate_with_model(
|
|
112 |
|
113 |
return '\n'.join(translated_chunks)
|
114 |
|
|
|
115 |
def detect_language(text):
|
116 |
lang = langdetect.detect(text)
|
117 |
return lang
|
118 |
|
|
|
119 |
def translate_with_bilingual_model(
|
120 |
text, src_lang, tgt_lang, sents_per_chunk
|
121 |
):
|
@@ -134,7 +133,7 @@ def translate_with_bilingual_model(
|
|
134 |
return translated_text_bilingual_model
|
135 |
|
136 |
|
137 |
-
|
138 |
def translate_with_m2m100_model(
|
139 |
text: str,
|
140 |
src_lang: str,
|
@@ -144,18 +143,17 @@ def translate_with_m2m100_model(
|
|
144 |
Translate with the m2m100 model
|
145 |
"""
|
146 |
tokenizer_m2m100.src_lang = src_lang
|
147 |
-
input_ids = tokenizer_m2m100(
|
148 |
-
|
149 |
outputs = model_m2m100.generate(
|
150 |
input_ids=input_ids,
|
151 |
-
forced_bos_token_id=tokenizer_m2m100.get_lang_id(tgt_lang)
|
152 |
-
)
|
153 |
translated_text = tokenizer_m2m100.batch_decode(
|
154 |
outputs[0], skip_special_tokens=True)
|
155 |
return translated_text
|
156 |
|
157 |
|
158 |
-
|
159 |
def translate_with_multilingual_model(
|
160 |
text: str,
|
161 |
tgt_lang: str,
|
@@ -184,6 +182,7 @@ def translate_with_multilingual_model(
|
|
184 |
|
185 |
return '\n'.join(translated_chunks)
|
186 |
|
|
|
187 |
def translate_text(
|
188 |
text: str,
|
189 |
src_lang: str=None,
|
|
|
68 |
# Append last chunk
|
69 |
if chunk:
|
70 |
chunks.append(chunk)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
return chunks
|
73 |
|
|
|
82 |
# Translate chunks
|
83 |
translated_chunks = []
|
84 |
for chunk in chunks:
|
85 |
+
|
86 |
+
# NOTE: The 'fa' (Persian) model has multiple target languages to choose from.
|
87 |
+
# We need to specifiy the desired languages among: fra ita por ron spa
|
88 |
+
# https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fa-itc
|
89 |
+
# Prepend text with >>fra<< in order to translate in French.
|
90 |
+
if src_lang == 'fa':
|
91 |
+
chunk = ">>fra<< " + chunk
|
92 |
+
|
93 |
inputs = tokenizer(
|
94 |
chunk, return_tensors="pt",
|
95 |
max_length=input_max_length,
|
|
|
109 |
|
110 |
return '\n'.join(translated_chunks)
|
111 |
|
112 |
+
|
113 |
def detect_language(text):
|
114 |
lang = langdetect.detect(text)
|
115 |
return lang
|
116 |
|
117 |
+
|
118 |
def translate_with_bilingual_model(
|
119 |
text, src_lang, tgt_lang, sents_per_chunk
|
120 |
):
|
|
|
133 |
return translated_text_bilingual_model
|
134 |
|
135 |
|
136 |
+
@spaces.GPU
|
137 |
def translate_with_m2m100_model(
|
138 |
text: str,
|
139 |
src_lang: str,
|
|
|
143 |
Translate with the m2m100 model
|
144 |
"""
|
145 |
tokenizer_m2m100.src_lang = src_lang
|
146 |
+
input_ids = tokenizer_m2m100(
|
147 |
+
text, return_tensors="pt").input_ids.to(model_m2m100.device)
|
148 |
outputs = model_m2m100.generate(
|
149 |
input_ids=input_ids,
|
150 |
+
forced_bos_token_id=tokenizer_m2m100.get_lang_id(tgt_lang))
|
|
|
151 |
translated_text = tokenizer_m2m100.batch_decode(
|
152 |
outputs[0], skip_special_tokens=True)
|
153 |
return translated_text
|
154 |
|
155 |
|
156 |
+
@spaces.GPU
|
157 |
def translate_with_multilingual_model(
|
158 |
text: str,
|
159 |
tgt_lang: str,
|
|
|
182 |
|
183 |
return '\n'.join(translated_chunks)
|
184 |
|
185 |
+
|
186 |
def translate_text(
|
187 |
text: str,
|
188 |
src_lang: str=None,
|