File size: 3,461 Bytes
fe02c49
 
 
 
eec4fa3
fe02c49
 
 
 
 
 
 
706408b
 
 
 
 
 
 
 
 
fe02c49
706408b
77364cc
706408b
 
77364cc
706408b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150301e
706408b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe02c49
 
 
 
 
 
 
 
 
 
 
 
 
efcd81a
fe02c49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efcd81a
fe02c49
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
File: model_translation.py

Description: 
   Loading models for text translations

Author: Didier Guillevic
Date: 2024-03-16
"""

import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration


class Singleton(type):
    _instances = {}
    def __call__(cls, *args, **kwargs):
        if cls not in cls._instances:
            cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
        return cls._instances[cls]

class ModelM2M100(metaclass=Singleton):
    """Loads an instance of the M2M100 model.
    """
    def __init__(self):
        self._model_name = "facebook/m2m100_1.2B"
        self._tokenizer = M2M100Tokenizer.from_pretrained(self._model_name)
        self._model = M2M100ForConditionalGeneration.from_pretrained(
            self._model_name,
            device_map="auto",
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True
        )
    
    @property
    def model_name(self):
        return self._model_name

    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def model(self):
        return self._model

class ModelMADLAD(metaclass=Singleton):
    """Loads an instance of the Google MADLAD model (3B).
    """
    def __init__(self):
        self._model_name = "google/madlad400-3b-mt"
        self._tokenizer = AutoTokenizer.from_pretrained(
            self.model_name, use_fast=True
        )
        self._model = AutoModelForSeq2SeqLM.from_pretrained(
            self._model_name,
            device_map="auto",
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True
        )
    
    @property
    def model_name(self):
        return self._model_name
    
    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def model(self):
        return self._model


# Bi-lingual individual models
src_langs = set(["ar", "en", "fa", "fr", "he", "ja", "zh"])
model_names = {
    "ar": "Helsinki-NLP/opus-mt-ar-en",
    "en": "Helsinki-NLP/opus-mt-en-fr",
    "fa": "Helsinki-NLP/opus-mt-tc-big-fa-itc",
    "fr": "Helsinki-NLP/opus-mt-fr-en",
    "he": "Helsinki-NLP/opus-mt-tc-big-he-en",
    "zh": "Helsinki-NLP/opus-mt-zh-en",
}

# Registry for all loaded bilingual models
tokenizer_model_registry = {}

device = 'cpu'

def get_tokenizer_model_for_src_lang(src_lang: str) -> (AutoTokenizer, AutoModelForSeq2SeqLM):
    """
    Return the (tokenizer, model) for a given source language.
    """
    src_lang = src_lang.lower()

    # Already loaded?
    if src_lang in tokenizer_model_registry:
        return tokenizer_model_registry.get(src_lang)

    # Load tokenizer and model
    model_name = model_names.get(src_lang)
    if not model_name:
        raise Exception(f"No model defined for language: {src_lang}")
    
    # We will leave the models on the CPU (for now)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    if model.config.torch_dtype != torch.float16:
        model = model.half()
    model.to(device)
    tokenizer_model_registry[src_lang] = (tokenizer, model)

    return (tokenizer, model)

# Max number of words for given input text
# - Usually 512 tokens (max position encodings, as well as max length)
# - Let's set to some number of words somewhat lower than that threshold
# - e.g. 200 words
max_words_per_chunk = 200