Spaces:
Sleeping
Sleeping
File size: 11,418 Bytes
3e6ffc5 6290a8c 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 6290a8c fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 3e6ffc5 fe02c49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
"""
File: module_translation_MADLAD.py
Description: Module to translate between 400 languages.
Author: Didier Guillevic
Date: 2024-09-07
"""
import spaces
import torch
import gradio as gr
import langdetect
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
import model_translation as translation
from model_translation import tokenizer_multilingual
from model_translation import model_multilingual
from deep_translator import GoogleTranslator
from model_spacy import nlp_xx
#
# Translate given input text
#
def build_text_chunks(text, src_lang, sents_per_chunk):
"""
Given a text:
- Split the text into sentences.
- Build text chunks:
- Consider up to sents_per_chunk
- Ensure that we do not exceed translation.max_words_per_chunk
"""
# Split text into sentences...
sentences = [
sent.text.strip() for sent in nlp_xx(text).sents if sent.text.strip()]
logger.info(f"LANG: {src_lang}, TEXT: {text[:20]}, NB_SENTS: {len(sentences)}")
# Create text chunks of N sentences
chunks = []
chunk = ''
chunk_nb_sentences = 0
chunk_nb_words = 0
for i in range(0, len(sentences)):
# Get sentence
sent = sentences[i]
sent_nb_words = len(sent.split())
# If chunk already 'full', save chunk, start new chunk
if (
(chunk_nb_words + sent_nb_words > translation.max_words_per_chunk) or
(chunk_nb_sentences + 1 > sents_per_chunk)
):
chunks.append(chunk)
chunk = ''
chunk_nb_sentences = 0
chunk_nb_words = 0
# Append sentence to current chunk. One sentence per line.
chunk = (chunk + '\n' + sent) if chunk else sent
chunk_nb_sentences += 1
chunk_nb_words += sent_nb_words
# Append last chunk
if chunk:
chunks.append(chunk)
# !!! SKIP splitting of text into chunks for now !!!
# Might not be reliable for non-European languages.
#chunks = [text, ]
# NOTE: The 'fa' (Persian) model has multiple target languages to choose from.
# We need to specifiy the desired languages among: fra ita por ron spa
# https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fa-itc
# Prepend text with >>fra<< in order to translate in French.
if src_lang == 'fa':
chunks = [">>fra<< " + chunk for chunk in chunks]
return chunks
def translate_with_model(
text, tokenizer, model, src_lang, sents_per_chunk,
input_max_length=512, output_max_length=512):
# Build text chunks (using sents_per_chunk and translation.max_words_per_chunk)
chunks = build_text_chunks(text, src_lang, sents_per_chunk)
logger.info(f"LANG: {src_lang}, TEXT: {text[:20]}, NB_CHUNKS: {len(chunks)}")
# Translate chunks
translated_chunks = []
for chunk in chunks:
inputs = tokenizer(
chunk, return_tensors="pt",
max_length=input_max_length,
truncation=True, padding="longest").to(model.device)
outputs = model.generate(
**inputs,
max_length=output_max_length)
translated_chunk = tokenizer.batch_decode(
outputs, skip_special_tokens=True)[0]
#logger.info(f"Text: {chunk}")
#logger.info(f"Translation: {translated_chunk}")
translated_chunks.append(translated_chunk)
return '\n'.join(translated_chunks)
def detect_language(text):
lang = langdetect.detect(text)
return lang
@spaces.GPU
def translate_with_multilingual_model(
text: str,
tgt_lang: str,
sents_per_chunk: int=5,
input_max_length: int=512,
output_max_length: int=512):
"""
Translate the givent text into English (default "easy" language)
"""
chunks = build_text_chunks(text, None, sents_per_chunk)
translated_chunks = []
for chunk in chunks:
input_text = f"<2{tgt_lang}> {text}"
logger.info(f" Translating: {input_text[:30]}")
input_ids = tokenizer_multilingual(
input_text, return_tensors="pt",
max_length=input_max_length,
truncation=True, padding="longest").input_ids.to(
model_multilingual.device)
outputs = model_multilingual.generate(
input_ids=input_ids, max_length=output_max_length)
translated_chunk = tokenizer_multilingual.decode(outputs[0], skip_special_tokens=True)
translated_chunks.append(translated_chunk)
return '\n'.join(translated_chunks)
def translate_text(
text: str,
src_lang: str=None,
sents_per_chunk: int=5,
input_max_length: int=512,
output_max_length: int=512):
"""
Translate the given text into English (default "easy" language)
"""
#
# Bilingual (Helsinki model)
#
src_lang = src_lang if (src_lang and src_lang != "auto") else detect_language(text)
if src_lang not in translation.src_langs:
return (
f"ISSUE: currently no model for language '{src_lang}'. "
"If wrong language, please specify language."
)
logger.info(f"LANG: {src_lang}, TEXT: {text[:50]}...")
tokenizer, model = translation.get_tokenizer_model_for_src_lang(src_lang)
translated_text_bilingual_model = translate_with_model(
text, tokenizer, model, src_lang, sents_per_chunk)
#
# Multilingual model (Google MADLAD)
#
tgt_lang = 'en' # Default "easy" language
translated_text_multilingual_model = translate_with_multilingual_model(
text, tgt_lang, sents_per_chunk, input_max_length, output_max_length)
#
# Google Translate
#
translated_text_google_translate = GoogleTranslator(
source='auto', target='en').translate(text=text)
return (
translated_text_bilingual_model,
translated_text_multilingual_model,
translated_text_google_translate
)
#
# User interface
#
with gr.Blocks() as demo:
gr.Markdown("""
## Text translation v0.0.2 (basic, small paragraph, multilingual)
""")
input_text = gr.Textbox(
lines=15,
placeholder="Enter text to translate",
label="Text to translate",
render=False
)
output_text_bilingual_model = gr.Textbox(
lines=6,
label="Bilingual translation model (Helsinki NLP)",
render=False
)
output_text_multilingual_model = gr.Textbox(
lines=6,
label="Multilingual translation model (**small** Google MADLAD)",
render=False
)
output_text_google_translate = gr.Textbox(
lines=6,
label="Google Translate",
render=False
)
# Extra (additional) input parameters
sentences_per_chunk = gr.Slider(
minimum=1, maximum=10, value=5, step=1,
label="nb sentences per context",
render=False
)
src_lang = gr.Radio(
choices=["auto", "ar", "en", "fa", "fr", "he", "ja", "zh"], value="auto",
label="Source language",
render=False
)
# Examples
examples = [
["ریچارد مور، رئیس سازمان مخفی اطلاعاتی بریتانیا (امآی۶) در دیدار ویلیام برنز، رئیس سازمان اطلاعات مرکزی آمریکا (سیا) گفت همچنان احتمال اقدام ایران علیه اسرائیل در واکنش به ترور اسماعیل هنیه، رهبر حماس وجود دارد. آقای برنز نیز در این دیدار فاش کرد که در سال اول جنگ اوکراین، «خطر واقعی» وجود داشت که روسیه به استفاده از «تسلیحات هستهای تاکتیکی» متوسل شود. این دو مقام امنیتی هشدار دادند که «نظم جهانی» از زمان جنگ سرد تا کنون تا این حد «در معرض تهدید» نبوده است.", "fa"],
["Clément Delangue est, avec Julien Chaumond et Thomas Wolf, l’un des trois Français cofondateurs de Hugging Face, une start-up d’intelligence artificielle (IA) de premier plan. Valorisée à 4,2 milliards d’euros après avoir levé près de 450 millions d’euros depuis sa création en 2016, cette société de droit américain est connue comme la plate-forme de référence où développeurs et entreprises publient des outils et des modèles pour faire de l’IA en open source, c’est-à-dire accessible gratuitement et modifiable.", "fr"],
["يُعد تفشي مرض جدري القردة قضية صحية عالمية خطيرة، ومن المهم محاولة منع انتشاره للحفاظ على سلامة الناس وتجنب العدوى. د. صموئيل بولاند، مدير الحوادث الخاصة بمرض الجدري في المكتب الإقليمي لمنظمة الصحة العالمية في أفريقيا، يتحدث من كينشاسا في جمهورية الكونغو الديمقراطية، ولديه بعض النصائح البسيطة التي يمكن للناس اتباعها لتقليل خطر انتشار المرض.", "ar"],
["【ワシントン=冨山優介】米ボーイングの新型宇宙船「スターライナー」は7日午前0時(日本時間7日午後1時)過ぎ、米ニューメキシコ州のホワイトサンズ宇宙港に着地し、地球に帰還した。スターライナーは米宇宙飛行士2人を乗せて6月に打ち上げられ、国際宇宙ステーション(ISS)に接続したが、機体のトラブルが解決できず、無人でISSから離脱した。", "ja"],
["張先生稱,奇瑞已經凖備在西班牙生產汽車,並決心採取「本地化」的方式進入歐洲市場。此外,他也否認該公司的出口受益於不公平補貼。奇瑞成立於1997年,是中國最大的汽車公司之一。它已經是中國最大的汽車出口商,並且制定了進一步擴張的野心勃勃的計劃。", "zh"],
["ברוכה הבאה, קיטי: בית הקפה החדש בלוס אנג'לס החתולה האהובה והחברים שלה מקבלים בית קפה משלהם בשדרות יוניברסל סיטי, שם תוכלו למצוא מגוון של פינוקים מתוקים – החל ממשקאות ועד עוגות", "he"],
]
outputs = gr.Row(
)
gr.Interface(
fn=translate_text,
inputs=[input_text,],
outputs=[
output_text_bilingual_model,
output_text_multilingual_model,
output_text_google_translate,
],
additional_inputs=[src_lang, sentences_per_chunk],
clear_btn=None, # Unfortunately, clear_btn also reset the additional inputs. Hence disabling for now.
allow_flagging="never",
examples=examples,
cache_examples=True
)
with gr.Accordion("Documentation", open=False):
gr.Markdown("""
- Models: serving bilingual models from Helsinki NLP and multilingual model from Google MADLAD.
- Basic: processing of long paragraph / document to be enhanced.
- Most examples are copy/pasted from BBC news international web sites.
""")
if __name__ == "__main__":
demo.launch()
|