Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import string
|
3 |
+
import re
|
4 |
+
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
model_checkpoint = "Didier/bert-base-multilingual-uncased-finetuned-postal-can"
|
8 |
+
token_classifier = pipeline(
|
9 |
+
"token-classification", model=model_checkpoint, aggregation_strategy="simple"
|
10 |
+
)
|
11 |
+
|
12 |
+
#
|
13 |
+
# Parse a given Canadian postal address
|
14 |
+
#
|
15 |
+
def replace_punctuation_with_space(text):
|
16 |
+
translator = str.maketrans(string.punctuation, ' ' * len(string.punctuation))
|
17 |
+
return text.translate(translator)
|
18 |
+
|
19 |
+
def replace_multiple_spaces(text):
|
20 |
+
"""Replaces multiple contiguous spaces in a string with a single space.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
text: The input string.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
The string with multiple contiguous spaces replaced by a single space.
|
27 |
+
"""
|
28 |
+
return re.sub(r'\s+', ' ', text)
|
29 |
+
|
30 |
+
def parse_postal_address_can(text):
|
31 |
+
"""Parse the given Canadian address into its components.
|
32 |
+
"""
|
33 |
+
text = text.lower()
|
34 |
+
text = replace_punctuation_with_space(text)
|
35 |
+
text = replace_multiple_spaces(text)
|
36 |
+
return token_classifier(text)
|
37 |
+
|
38 |
+
|
39 |
+
#
|
40 |
+
# User interface
|
41 |
+
#
|
42 |
+
with gr.Blocks() as demo:
|
43 |
+
|
44 |
+
#gr.Markdown("""
|
45 |
+
# - The provided Canadian postal address will be parsed into its components.
|
46 |
+
#""")
|
47 |
+
|
48 |
+
input_text = gr.Textbox(
|
49 |
+
lines=5,
|
50 |
+
placeholder="Enter Canadian postal address to parse",
|
51 |
+
label="Canadian postal address",
|
52 |
+
render=False
|
53 |
+
)
|
54 |
+
output_text = gr.Textbox(lines=10, render=False)
|
55 |
+
|
56 |
+
gr.Interface(
|
57 |
+
fn=parse_postal_address_can,
|
58 |
+
inputs=[input_text,],
|
59 |
+
outputs=[output_text,],
|
60 |
+
allow_flagging="never"
|
61 |
+
#clear_btn=None
|
62 |
+
)
|
63 |
+
|
64 |
+
with gr.Accordion("Documentation", open=False):
|
65 |
+
gr.Markdown("""
|
66 |
+
- **Labels (address components)**:
|
67 |
+
- O, STREET_NB, STREET_NAME, UNIT, CITY, REGION, POSTCODE
|
68 |
+
- Dataset trained on:
|
69 |
+
- Approx. 1 million Canadian postal addresses from OpenAddresses.io
|
70 |
+
- (Current) Limitations:
|
71 |
+
- no label for person_name / company_name (no data to train on)
|
72 |
+
- trained on **post-normalized** addresses from OpenAddresses.io,
|
73 |
+
hence missing un-normalized forms. E.g. "ST" (for street), but
|
74 |
+
no training data with "street", "str.", ...
|
75 |
+
""")
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
demo.launch()
|