Dharma20 commited on
Commit
564b57c
Β·
verified Β·
1 Parent(s): cdefda1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +134 -134
app.py CHANGED
@@ -1,134 +1,134 @@
1
- import gradio as gr
2
- from setup import *
3
- import pandas as pd
4
- from openpyxl import Workbook
5
- from openpyxl.utils.dataframe import dataframe_to_rows
6
- from openpyxl.styles import Font
7
- from feasibility_agent import feasibility_agent_func
8
- from short import graph
9
-
10
-
11
- # # Function to create Excel file
12
- # def create_excel(df):
13
- # # Create a new Excel workbook and select the active sheet
14
- # wb = Workbook()
15
- # ws = wb.active
16
- # ws.title = "Use Cases"
17
-
18
- # # Define and write headers to the Excel sheet
19
- # headers = ['Use Case', 'Description', 'URLs']
20
- # ws.append(headers)
21
-
22
- # # Write data rows
23
- # for _, row in df.iterrows():
24
- # try:
25
- # use_case = row['use_case']
26
- # description = row['description']
27
- # urls = row['urls_list']
28
-
29
- # ws.append([use_case, description, None]) # Add use case and description
30
- # if urls:
31
- # for url_index, url in enumerate(urls):
32
- # cell = ws.cell(row=ws.max_row, column=3) # URLs go into the third column
33
- # cell.value = url
34
- # cell.hyperlink = url
35
- # cell.font = Font(color="0000FF", underline="single")
36
-
37
- # # Add a new row for additional URLs
38
- # if url_index < len(urls) - 1:
39
- # ws.append([None, None, None])
40
- # except KeyError as e:
41
- # print(f"Missing key in DataFrame row: {e}")
42
- # except Exception as e:
43
- # print(f"Unexpected error while processing row: {e}")
44
-
45
- # excel_file_path = "GenAI_use_cases_feasibility.xlsx"
46
- # wb.save(excel_file_path)
47
- # return excel_file_path
48
-
49
-
50
- # # Function to handle the report and create the DataFrame
51
- # def pd_creation(report):
52
- # # Assuming feasibility_agent_func returns a dictionary
53
- # pd_dict = feasibility_agent_func(report)
54
-
55
- # # Check for expected keys in pd_dict before proceeding
56
- # required_columns = ['use_case', 'description', 'urls_list']
57
- # print("-----Dict------->", pd_dict)
58
- # # if not all(col in pd_dict for col in required_columns):
59
- # # raise ValueError(f"Missing one or more expected columns: {required_columns}")
60
-
61
- # # Create the DataFrame from the dictionary
62
- # df = pd.DataFrame(pd_dict)
63
-
64
- # # Convert the dataframe to the format expected by Gradio (list of lists)
65
- # data = df.values.tolist() # This creates a list of lists from the dataframe
66
-
67
- # # Create the Excel file and return its path
68
- # excel_file_path = create_excel(df) # Create the Excel file and get its path
69
-
70
- # return data, excel_file_path # Return the formatted data and the Excel file path
71
-
72
- # Main function that handles the user query and generates the report
73
- def main(user_input):
74
- topic = user_input
75
- report = graph(topic=topic, max_analysts=5)
76
- print(report)
77
- # pd_dict, excel_file_path = pd_creation(report)
78
-
79
- # Save the report as a markdown file
80
- report_file_path = "generated_report.md"
81
- with open(report_file_path, "w") as f:
82
- f.write(report)
83
-
84
- return report, report_file_path
85
-
86
- # Example queries
87
- examples = [
88
- "How is the retail industry leveraging AI and ML?",
89
- "AI applications in automotive manufacturing"
90
- ]
91
-
92
- # Creating the Gradio interface
93
- with gr.Blocks(theme=gr.themes.Soft(font=gr.themes.GoogleFont('Open Sans'))) as demo:
94
- # Header section
95
- gr.HTML("<center><h1>UseCaseGenie - Discover GenAI Use cases for your company and Industry! πŸ€–πŸ§‘β€πŸ³.</h1><center>")
96
- gr.Markdown("""#### This GenAI Assistant πŸ€– helps you discover and explore Generative AI use cases for your company and industry.
97
- You can download the generated use case report as a <b>Markdown file</b> to gain insights and explore relevant GenAI applications.
98
- ### <b>Steps:</b>
99
- 1. <b>Enter your query</b> regarding any company or industry.
100
- 2. <b>Click on the 'Submit' button</b> and wait for the GenAI assistant to generate the report.
101
- 3. <b>Download the generated report<b>
102
- 4. Explore the GenAI use cases""")
103
- gr.Markdown("**Note:** The app demo may occasionally show errors due to rate limits of the underlying language model (LLM). If you encounter an error, please try again later. If the problem persists please raise issue. Thank you for your understanding!")
104
-
105
- # Input for the user query
106
- with gr.Row():
107
- user_input = gr.Textbox(label="Enter your Query", placeholder='Type_here...')
108
-
109
- # Examples to help users with inputs
110
- with gr.Row():
111
- gr.Examples(examples=examples, inputs=user_input)
112
-
113
- # Buttons for submitting and downloading
114
- with gr.Row():
115
- submit_button = gr.Button("Submit")
116
- clear_btn = gr.ClearButton([user_input], value='Clear')
117
-
118
- # File download buttons
119
- with gr.Row():
120
- # Create a downloadable markdown file
121
- download_report_button = gr.File(label="Usecases Report")
122
-
123
- # # Create a downloadable Excel file
124
- # download_excel_button = gr.File(label="Feasibility Excel File")
125
-
126
- # Display report in Markdown format
127
- with gr.Row():
128
- report_output = gr.Markdown()
129
-
130
- submit_button.click(main, inputs=[user_input], outputs=[report_output, download_report_button])
131
-
132
- # Run the interface
133
- demo.launch()
134
-
 
1
+ import gradio as gr
2
+ from setup import *
3
+ import pandas as pd
4
+ from openpyxl import Workbook
5
+ from openpyxl.utils.dataframe import dataframe_to_rows
6
+ from openpyxl.styles import Font
7
+ from feasibility_agent import feasibility_agent_func
8
+ from short import graph
9
+
10
+
11
+ # # Function to create Excel file
12
+ # def create_excel(df):
13
+ # # Create a new Excel workbook and select the active sheet
14
+ # wb = Workbook()
15
+ # ws = wb.active
16
+ # ws.title = "Use Cases"
17
+
18
+ # # Define and write headers to the Excel sheet
19
+ # headers = ['Use Case', 'Description', 'URLs']
20
+ # ws.append(headers)
21
+
22
+ # # Write data rows
23
+ # for _, row in df.iterrows():
24
+ # try:
25
+ # use_case = row['use_case']
26
+ # description = row['description']
27
+ # urls = row['urls_list']
28
+
29
+ # ws.append([use_case, description, None]) # Add use case and description
30
+ # if urls:
31
+ # for url_index, url in enumerate(urls):
32
+ # cell = ws.cell(row=ws.max_row, column=3) # URLs go into the third column
33
+ # cell.value = url
34
+ # cell.hyperlink = url
35
+ # cell.font = Font(color="0000FF", underline="single")
36
+
37
+ # # Add a new row for additional URLs
38
+ # if url_index < len(urls) - 1:
39
+ # ws.append([None, None, None])
40
+ # except KeyError as e:
41
+ # print(f"Missing key in DataFrame row: {e}")
42
+ # except Exception as e:
43
+ # print(f"Unexpected error while processing row: {e}")
44
+
45
+ # excel_file_path = "GenAI_use_cases_feasibility.xlsx"
46
+ # wb.save(excel_file_path)
47
+ # return excel_file_path
48
+
49
+
50
+ # # Function to handle the report and create the DataFrame
51
+ # def pd_creation(report):
52
+ # # Assuming feasibility_agent_func returns a dictionary
53
+ # pd_dict = feasibility_agent_func(report)
54
+
55
+ # # Check for expected keys in pd_dict before proceeding
56
+ # required_columns = ['use_case', 'description', 'urls_list']
57
+ # print("-----Dict------->", pd_dict)
58
+ # # if not all(col in pd_dict for col in required_columns):
59
+ # # raise ValueError(f"Missing one or more expected columns: {required_columns}")
60
+
61
+ # # Create the DataFrame from the dictionary
62
+ # df = pd.DataFrame(pd_dict)
63
+
64
+ # # Convert the dataframe to the format expected by Gradio (list of lists)
65
+ # data = df.values.tolist() # This creates a list of lists from the dataframe
66
+
67
+ # # Create the Excel file and return its path
68
+ # excel_file_path = create_excel(df) # Create the Excel file and get its path
69
+
70
+ # return data, excel_file_path # Return the formatted data and the Excel file path
71
+
72
+ # Main function that handles the user query and generates the report
73
+ def main(user_input):
74
+ topic = user_input
75
+ report = graph(topic=topic, max_analysts=5)
76
+ print(report)
77
+ # pd_dict, excel_file_path = pd_creation(report)
78
+
79
+ # Save the report as a markdown file
80
+ report_file_path = "generated_report.md"
81
+ with open(report_file_path, "w") as f:
82
+ f.write(report)
83
+
84
+ return report, report_file_path
85
+
86
+ # Example queries
87
+ examples = [
88
+ "How is the retail industry leveraging AI and ML?",
89
+ "AI applications in automotive manufacturing"
90
+ ]
91
+
92
+ # Creating the Gradio interface
93
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
94
+ # Header section
95
+ gr.HTML("<center><h1>UseCaseGenie - Discover GenAI Use cases for your company and Industry! πŸ€–πŸ§‘β€πŸ³.</h1><center>")
96
+ gr.Markdown("""#### This GenAI Assistant πŸ€– helps you discover and explore Generative AI use cases for your company and industry.
97
+ You can download the generated use case report as a <b>Markdown file</b> to gain insights and explore relevant GenAI applications.
98
+ ### <b>Steps:</b>
99
+ 1. <b>Enter your query</b> regarding any company or industry.
100
+ 2. <b>Click on the 'Submit' button</b> and wait for the GenAI assistant to generate the report.
101
+ 3. <b>Download the generated report<b>
102
+ 4. Explore the GenAI use cases""")
103
+ gr.Markdown("**Note:** The app demo may occasionally show errors due to rate limits of the underlying language model (LLM). If you encounter an error, please try again later. If the problem persists please raise issue. Thank you for your understanding!")
104
+
105
+ # Input for the user query
106
+ with gr.Row():
107
+ user_input = gr.Textbox(label="Enter your Query", placeholder='Type_here...')
108
+
109
+ # Examples to help users with inputs
110
+ with gr.Row():
111
+ gr.Examples(examples=examples, inputs=user_input)
112
+
113
+ # Buttons for submitting and downloading
114
+ with gr.Row():
115
+ submit_button = gr.Button("Submit")
116
+ clear_btn = gr.ClearButton([user_input], value='Clear')
117
+
118
+ # File download buttons
119
+ with gr.Row():
120
+ # Create a downloadable markdown file
121
+ download_report_button = gr.File(label="Usecases Report")
122
+
123
+ # # Create a downloadable Excel file
124
+ # download_excel_button = gr.File(label="Feasibility Excel File")
125
+
126
+ # Display report in Markdown format
127
+ with gr.Row():
128
+ report_output = gr.Markdown()
129
+
130
+ submit_button.click(main, inputs=[user_input], outputs=[report_output, download_report_button])
131
+
132
+ # Run the interface
133
+ demo.launch()
134
+