Spaces:
Sleeping
Sleeping
import gradio as gr | |
from pipeline import preprocessing_pipeline, conversational_rag | |
from pipeline import system_message, user_message | |
from haystack.dataclasses import ChatMessage | |
import time | |
import os | |
def process_files_into_docs(files,progress=gr.Progress()): | |
if isinstance(files, dict): | |
files = [files] | |
if not files: | |
return 'No file uploaded!' | |
preprocessing_pipeline.run({'file_type_router': {'sources': files}}) | |
return "Database created🤗🤗" | |
def rag(history,question): | |
if history is None: | |
history=[] | |
messages = [system_message, user_message] | |
res = conversational_rag.run( | |
data = {'query_rephrase_prompt_builder' : {'query': question}, | |
'prompt_builder': {'template': messages, 'query': question}, | |
'memory_joiner': {'values': [ChatMessage.from_user(question)]}}, | |
include_outputs_from=['llm','query_rephrase_llm']) | |
bot_message = res['llm']['replies'][0].content | |
streamed_message = "" | |
for token in bot_message.split(): | |
streamed_message += f"{token} " | |
yield history + [(question, streamed_message.strip())], " " | |
time.sleep(0.05) | |
history.append((question,bot_message)) | |
yield history, " " | |
EXAMPLE_FILE = "RAG Survey.pdf" | |
with gr.Blocks(theme=gr.themes.Soft())as demo: | |
gr.HTML("<center><h1>TalkToFiles - Query your documents! 📂📄</h1><center>") | |
gr.Markdown("""##### This AI chatbot🤖 can help you chat with your documents. Can upload <b>Text(.txt), PDF(.pdf) and Markdown(.md)</b> files.\ | |
<b>Please do not upload confidential documents.</b>""") | |
with gr.Row(): | |
with gr.Column(scale=86): | |
gr.Markdown("""#### ***Step 1 - Upload Documents and Initialize RAG pipeline***</br> | |
Can upload Multiple documents""") | |
with gr.Row(): | |
file_input = gr.File(label='Upload Files', file_count='multiple',file_types=['.pdf', '.txt', '.md'],interactive=True) | |
with gr.Row(): | |
process_files = gr.Button('Create Document store') | |
with gr.Row(): | |
result = gr.Textbox(label="Document store", value='Document store not initialized') | |
#Pre-processing Events | |
process_files.click(fn=process_files_into_docs, inputs=file_input, outputs=result ,show_progress=True) | |
def load_example(): | |
return [EXAMPLE_FILE] | |
with gr.Row(): | |
gr.Examples( | |
examples=[[EXAMPLE_FILE]], | |
inputs=file_input, | |
examples_per_page=1, | |
label="Click to upload an example" | |
).dataset.click(fn=load_example, inputs=[], outputs=file_input) | |
with gr.Column(scale=200): | |
gr.Markdown("""#### ***Step 2 - Chat with your docs*** """) | |
chatbot = gr.Chatbot(label='ChatBot') | |
user_input = gr.Textbox(label='Enter your query', placeholder='Type here...') | |
with gr.Row(): | |
submit_button = gr.Button("Submit") | |
clear_btn = gr.ClearButton([user_input, chatbot], value='Clear') | |
submit_button.click(rag, inputs=[chatbot, user_input], outputs=[chatbot, user_input]) | |
demo.launch() | |