File size: 1,564 Bytes
5fc9652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
# Model and tokenizer setup
model_id = "kingabzpro/Llama-3.1-8B-Instruct-Mental-Health-Classification"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
return_dict=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
# Create the pipeline for text generation
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map="auto",
)
# Function to classify the text input
def classify_mental_health(text):
prompt = f"""Classify the text into Normal, Depression, Anxiety, Bipolar, and return the answer as the corresponding mental health disorder label.
text: {text}
label: """.strip()
# Generate the output using the model pipeline
outputs = pipe(prompt, max_new_tokens=2, do_sample=True, temperature=0.1)
# Extract the label from the output
label = outputs[0]["generated_text"].split("label: ")[-1].strip()
return label
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Mental Health Text Classification")
text_input = gr.Textbox(label="Enter your text:")
label_output = gr.Textbox(label="Predicted Mental Health Label")
btn = gr.Button("Classify")
# On button click, classify the input text
btn.click(classify_mental_health, inputs=text_input, outputs=label_output)
demo.launch()
|