from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import streamlit as st
import torch
from streamlit_drawable_canvas import st_canvas
st.set_page_config(page_title="Draw Something!", layout="centered")
if "prediction" not in st.session_state:
st.session_state["prediction"] = "Draw something!"
st.markdown(f"
{st.session_state['prediction']}
", unsafe_allow_html=True)
processor = AutoImageProcessor.from_pretrained("kmewhort/resnet34-sketch-classifier")
model = AutoModelForImageClassification.from_pretrained("kmewhort/resnet34-sketch-classifier")
canvas = st_canvas(
stroke_width=5,
stroke_color="#000000",
background_color="#FFFFFF",
height=700,
width=700,
drawing_mode="freedraw",
)
def predict_drawing():
if canvas.image_data is not None:
drawing = canvas.image_data.astype("uint8")
image = Image.fromarray(drawing).convert("L")
image = image.convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_idx = logits.argmax(-1).item()
st.session_state["prediction"] = model.config.id2label[predicted_class_idx]
else:
st.session_state["prediction"] = "Draw something!"
if canvas.image_data is not None:
predict_drawing()
css = '''
'''
st.markdown(css, unsafe_allow_html=True)