Devashish-Nagpal's picture
Updated the approach and shifted the flask app to gradio app for deployment on HuggingFace
ddf9ea0
raw
history blame
3.26 kB
import logging
import gradio as gr
from .nlp import NLPToSQL
from .db import Database
nlp = NLPToSQL()
db = Database()
logging.basicConfig(level=logging.INFO)
def chatbot(user_query):
try:
sql = nlp.query_to_sql(user_query)
logging.info(f"Generated SQL: {sql}")
result = db.execute_query(sql)
if 'error' in result:
return f"❌ Error: {result['error']}"
if not result['data']:
return "⚠️ No data found."
# Formatting SQL output
response = "**Query:**\n" + sql + "\n\n"
response += "**Result:**\n"
response += " | ".join(result['columns']) + "\n"
response += "-"*50 + "\n"
for row in result['data']:
response += " | ".join(str(cell) for cell in row) + "\n"
return response
except Exception as e:
logging.error(f"Error: {str(e)}")
return f"❌ Error: {str(e)}"
demo = gr.Interface(
fn=chatbot,
inputs=gr.Textbox(lines=2, placeholder="Ask your database anything..."),
outputs="markdown",
title="SQL Chat Assistant",
description="Enter a natural language question, and get the corresponding SQL query & result."
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
# Flask-based application can also be used
# import logging
# from flask import Flask, request, render_template_string
# from .nlp import NLPToSQL
# from .db import Database
# app = Flask(__name__)
# nlp = NLPToSQL()
# db = Database()
# logging.basicConfig(level=logging.INFO)
# HTML_TEMPLATE = """
# <!DOCTYPE html>
# <html>
# <head><title> Chat Assistant </title></head>
# <body>
# <h1> Database Chat Assistant</h1>
# <form method="POST">
# <input type="text" name="query" placeholder= "Enter your query..." size="50">
# <button type="submit">Ask</button>
# </form>
# {% if response %}
# <h3> Response: </h3>
# <pre>{{ response }}</pre>
# {% endif %}
# {% if error %}
# <p style = "color:red;">{{ error }} </p>
# {% endif %}
# </body>
# </html>
# """
# @app.route("/", methods=["GET", "POST"])
# def index():
# if request.method == 'POST':
# user_query = request.form['query']
# try:
# sql = nlp.query_to_sql(user_query)
# logging.info(f"Generated SQL: {sql}")
# result = db.execute_query(sql)
# if 'error' in result:
# return render_template_string(HTML_TEMPLATE, error=result['error'])
# if not result['data']:
# return render_template_string(HTML_TEMPLATE, error="No data found")
# response = " | ".join(result['columns']) + "\n"
# response += "-"*50 + "\n"
# for row in result['data']:
# response += " | ".join(str(cell) for cell in row) + "\n"
# return render_template_string(HTML_TEMPLATE, response=response)
# except Exception as e:
# logging.error(f"Error: {str(e)}")
# return render_template_string(HTML_TEMPLATE, error=f"Error: {str(e)}")
# return render_template_string(HTML_TEMPLATE)
# if __name__ == "__main__":
# app.run(debug=True)