Spaces:
Sleeping
Sleeping
File size: 40,137 Bytes
8886323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
#βββ Basic imports βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import os
import math
import sqlite3
import fitz # PyMuPDF for PDF parsing
from flask_socketio import SocketIO
# βββ Langchain Frameworks βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
from langchain.tools import Tool
from langchain.chat_models import ChatOpenAI
from langchain_groq import ChatGroq
from langchain_mistralai import ChatMistralAI
from langchain.agents import initialize_agent, AgentType
from langchain.schema import Document
from langchain.chains import RetrievalQA
from langchain.embeddings import OpenAIEmbeddings
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import TextLoader, PyMuPDFLoader
# taking global variables from the app.py file
#from app import DB_PATH, DOC_PATH, IMG_PATH, OTH_PATH
# βββ File paths ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import config
# Ensure this is at the very top
# βββ SQL Agent ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
from langchain_community.utilities import SQLDatabase
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain.chat_models import ChatOpenAI
from langgraph.prebuilt import create_react_agent
from langchain.agents import create_sql_agent
# βββ Memory βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
from langchain.memory import ConversationBufferMemory
from langchain.agents import initialize_agent, AgentType
from langchain.tools import Tool
from typing import List, Callable
from langchain.memory import ConversationBufferMemory
from langchain.schema import BaseMemory, AIMessage, HumanMessage, SystemMessage
from langchain.llms.base import LLM
from langchain.memory.chat_memory import BaseChatMemory
from pydantic import PrivateAttr
from langchain_core.messages import get_buffer_string
# 1) Create your memory object
from typing import List
from langchain.memory import ConversationBufferMemory
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.llms.base import LLM
from langchain.memory.chat_memory import BaseChatMemory
from pydantic import PrivateAttr
class AutoSummaryMemory(ConversationBufferMemory):
_llm: LLM = PrivateAttr()
_max_entries: int = PrivateAttr()
_reduce_to: int = PrivateAttr()
_summary_system_prompt: str = PrivateAttr()
def __init__(
self,
llm: LLM,
memory_key: str = "chat_history",
return_messages: bool = True,
max_entries: int = 20,
reduce_to: int = 5,
summary_system_prompt: str = (
"Summarize the following conversation so far in a concise paragraph. "
"Keep important facts and questions."
)
):
super().__init__(memory_key=memory_key, return_messages=return_messages)
self._llm = llm # PrivateAttr
self._max_entries = max_entries # PrivateAttr
self._reduce_to = reduce_to # PrivateAttr
self._summary_system_prompt = summary_system_prompt # PrivateAttr
def add_memory(self, inputs: dict, outputs: dict) -> None:
# Add the new turn as normal
super().add_memory(inputs=inputs, outputs=outputs)
# Check if memory length exceeded
msgs = self.chat_memory.messages
if len(msgs) >= self._max_entries:
full_text = "\n".join([f"{m.type}: {m.content}" for m in msgs])
summary = self._llm.predict(f"{self._summary_system_prompt}\n\n{full_text}")
recent = msgs[-self._reduce_to:]
self.chat_memory.messages = [
SystemMessage(content="Conversation summary: " + summary),
*recent
]
# βββ Image Processing ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
from PIL import Image
import pytesseract
from transformers import pipeline
from groq import Groq
import config
import requests
from io import BytesIO
from PIL import Image
from transformers import pipeline, TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests
from io import BytesIO
import base64
from PIL import UnidentifiedImageError
# βββ Browser var βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
from typing import List, Dict
import json
from io import BytesIO
from langchain.tools import tool # or langchain_core.tools
from playwright.sync_api import sync_playwright
from duckduckgo_search import DDGS
from bs4 import BeautifulSoup
import requests
from playwright.sync_api import sync_playwright
# Attempt to import Playwright for dynamic page rendering
try:
from playwright.sync_api import sync_playwright
_playwright_available = True
except ImportError:
_playwright_available = False
# Define forbidden keywords for basic NSFW filtering
_forbidden = ["porn", "sex", "xxx", "nude", "erotic"]
# βββ LLM Setup βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Load OpenAI API key from environment (required for LLM and embeddings)
import os
# API Keys from .env file
os.environ.setdefault("OPENAI_API_KEY", "<YOUR_OPENAI_KEY>") # Set your own key or env var
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY", "default_key_or_placeholder")
os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY", "default_key_or_placeholder")
# Tavily API Key
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY", "default_key_or_placeholder")
_forbidden = ["nsfw", "porn", "sex", "explicit"]
_playwright_available = True # set False to disable Playwright
# Globals for RAG system
vector_store = None
rag_chain = None
DB_PATH = None # will be set when a .db is uploaded
DOC_PATH = None # will be set when a document is uploaded
IMG_PATH = None # will be set when an image is uploaded
OTH_PATH = None # will be set when an other file is uploaded
# βββ LLMS ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#llm = ChatOpenAI(model_name="gpt-3.5-turbo", streaming=True, temperature=0)
llm = ChatGroq(model="meta-llama/llama-4-maverick-17b-128e-instruct", streaming=True, temperature=0)
#llm = ChatMistralAI(model="mistral-large-latest", streaming=True, temperature=0)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββββββββββββ Tool for browsing ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def tavily_search(query: str, top_k: int = 3) -> List[Dict]:
"""Call Tavily API and return a list of result dicts."""
if not TAVILY_API_KEY:
print("[Tavily] No API key set. Skipping Tavily search.")
return []
url = "https://api.tavily.com/search"
headers = {
"Authorization": f"Bearer {TAVILY_API_KEY}",
"Content-Type": "application/json",
}
payload = {"query": query, "num_results": top_k}
try:
resp = requests.post(url, headers=headers, json=payload, timeout=10)
resp.raise_for_status()
data = resp.json()
results = []
for item in data.get("results", []):
results.append({
"title": item.get("title", ""),
"url": item.get("url", ""),
"snippet": item.get("content", "")[:200],
"source": "Tavily"
})
return results
except (requests.exceptions.RequestException, ValueError) as e:
print(f"[Tavily] search failed: {e}")
return []
def duckduckgo_search(query: str, top_k: int = 3) -> List[Dict]:
"""Query DuckDuckGo and return up to top_k raw SERP hits."""
try:
results = []
with DDGS() as ddgs:
for hit in ddgs.text(query, safesearch="On", max_results=top_k):
results.append({
"title": hit.get("title", ""),
"url": hit.get("href") or hit.get("url", ""),
"snippet": hit.get("body", ""),
"source": "DuckDuckGo"
})
if len(results) >= top_k:
break
return results
except Exception as e:
print(f"[DuckDuckGo] search failed: {e}")
return []
def hybrid_web_search(query: str, top_k: int = 3) -> str:
"""
Returns a JSON string with combined Tavily + DuckDuckGo results.
Always returns non-empty JSON with at least a placeholder result.
"""
tavily = tavily_search(query, top_k)
ddg = duckduckgo_search(query, top_k)
combined = tavily + ddg
# Always return at least a message to avoid agent crashes
if not combined:
combined = [{
"title": "No results found",
"url": "",
"snippet": f"Could not find suitable web results for '{query}'.",
"source": "None"
}]
output = {"query": query, "results": combined}
return json.dumps(output, ensure_ascii=False, indent=2)
def web_search(query: str, top_k: int = 3) -> str:
"""
Full hybrid search with Playwright/BeautifulSoup scraping + Tavily/DuckDuckGo.
Always returns valid JSON output.
"""
results: List[Dict] = []
# Step 1: DuckDuckGo + scraping
try:
with DDGS() as ddgs:
hits = ddgs.text(query, safesearch="On", max_results=top_k)
except Exception as e:
print(f"[web_search] DuckDuckGo lookup failed: {e}")
hits = []
for hit in hits:
url = hit.get("href") or hit.get("url")
if not url:
continue
try:
with sync_playwright() as pw:
browser = pw.chromium.launch(headless=True)
page = browser.new_page()
page.goto(url, wait_until="domcontentloaded", timeout=15000)
html = page.content()
browser.close()
soup = BeautifulSoup(html, "html.parser")
text = soup.get_text(separator=" ", strip=True)
except Exception as e:
print(f"[web_search] scraping failed for {url}: {e}")
continue
if any(f in text.lower() for f in _forbidden):
continue
excerpt = " ".join(text.split()[:200])
results.append({
"title": hit.get("title", ""),
"url": url,
"snippet": hit.get("body", ""),
"content": excerpt
})
# Step 2: Parse hybrid Tavily + DDG JSON into list
try:
raw = hybrid_web_search(query, top_k)
parsed = json.loads(raw)
other = parsed.get("results", [])
except Exception as e:
print(f"[web_search] parsing hybrid results failed: {e}")
other = []
# Step 3: Combine and return
combined = results + other
if not combined:
combined = [{
"title": "No results found",
"url": "",
"snippet": f"Could not find suitable content for '{query}'.",
"source": "None"
}]
output = {
"query": query,
"sources_count": len(combined),
"results": combined,
"sources": list({item.get("url", "") for item in combined if item.get("url")})
}
return json.dumps(output, ensure_ascii=False, indent=2)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββββββββββββ Tool for calculation βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def calculate(expr: str) -> str:
"""
Evaluates a mathematical expression safely.
Uses Python's numexpr for security and speed:contentReference[oaicite:21]{index=21}.
"""
try:
# Allow math constants
local_dict = {"pi": math.pi, "e": math.e}
# Evaluate expression using numexpr for safety/performance
import numexpr
result = numexpr.evaluate(expr, local_dict=local_dict)
return str(result.item())
except Exception as e:
return f"Error calculating expression: {e}"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββββββββββββ Tool for Date and time βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def get_current_date(_: str = "") -> str:
"""
Returns the current date and time. Ignoring input.
"""
from datetime import datetime
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββββββββββββ Tool for SQL Database ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_sql_agent_function(db_uri: str, top_k: int = 5):
"""
Creates a full-fledged SQL agent function that can answer natural language questions over a SQL database.
Args:
db_uri (str): The SQLAlchemy database URI, e.g. "sqlite:///Chinook.db"
top_k (int): Number of rows to limit in results (default 5)
Returns:
agent_executor: LangChain agent that can .run() or .stream()
"""
# 1) Initialize the database + LLM + toolkit
db = SQLDatabase.from_uri(db_uri)
llm = ChatGroq(model="meta-llama/llama-4-maverick-17b-128e-instruct", streaming=False, temperature=0)
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
# 2) Prompt with all required variables declared AND used
prompt = PromptTemplate(
template="""
You are an agent designed to interact with a SQL database.
Given the user question below, first generate a syntactically correct {dialect} query.
Then look at the results of that query, and return the answer.
Always limit to at most {top_k} rows unless the user specifies otherwise.
If you encounter an error, rewrite your SQL and retry.
DO NOT issue any INSERT/UPDATE/DELETE/DROP/ statements.
DO NOT try to create new database tables or columns when user has not asked for.
Always inspect the schema before querying.
Available tools: {tools}
Tool names: {tool_names}
User question: {input}
{agent_scratchpad}
""".strip(),
input_variables=["input", "dialect", "top_k", "agent_scratchpad", "tools", "tool_names"],
)
# 3) Create the agent with prompt + toolkit tools
agent_executor = create_sql_agent(
llm=llm,
toolkit=toolkit,
prompt=prompt,
verbose=False,
# pass top_k dynamically
extra_prompt_kwargs={"top_k": str(top_k), "dialect": db.dialect},
)
return agent_executor
def execute_sql(query: str) -> str:
"""
Executes a SQL query against the uploaded SQLite DB (GLOBAL_DB_PATH).
Returns a string of results or error.
"""
if DB_PATH is None:
return "No database uploaded. Please upload a SQLite file first."
print("DB_PATH--------->:", DB_PATH)
db_uri = f"sqlite:///{DB_PATH}"
agent_executor2 = create_sql_agent_function(db_uri, top_k=5)
try:
result = agent_executor2.run(query)
except Exception as e:
result = f"Agent / SQL error: {e}"
return result
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββββββββββββ Tool for RAG (Document Intelligence) βββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def rag_index_document(DOC_PATH: str) -> str:
"""
Indexes the given document into the RAG vector store.
Supports text files or PDFs. Uses recursive text splitting for better chunking.
"""
global vector_store, rag_chain
text = ""
# Read text from file
if DOC_PATH and DOC_PATH.lower().endswith(".pdf"):
doc = fitz.open(DOC_PATH)
for page in doc:
text += page.get_text()
else:
with open(DOC_PATH, 'r', encoding='utf-8') as f:
text = f.read()
# Split text using recursive text splitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, # You can adjust this (e.g., 500-1000)
chunk_overlap=100 # Overlap for better context between chunks
)
# Split into chunks
texts = text_splitter.split_text(text)
# Create Document objects with metadata
docs = [Document(page_content=t, metadata={"source": DOC_PATH}) for t in texts]
# Initialize or append to FAISS vector store
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
if vector_store is None:
vector_store = FAISS.from_documents(docs, embeddings)
else:
vector_store.add_documents(docs)
retriever = vector_store.as_retriever(
search_type="mmr",
search_kwargs={
"k": 10,
"fetch_k": 10,
"lambda_mult": 0.25
}
)
# Build or update the RetrievalQA chain
rag_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=False
)
def rag_answer(query: str) -> str:
"""
Answers a question using the RAG chain (on indexed documents).
"""
global rag_chain
if rag_chain is None:
return "No documents indexed. Please upload documents via /upload_doc."
try:
answer = rag_chain.run(query)
return answer
except Exception as e:
return f"RAG error: {e}"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββ Tool for Image (understading, captioning & classification) βββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Vision tools and functions
# Load image function
# def _load_image():
# try:
# if IMG_PATH.startswith("http"):
# res = requests.get(IMG_PATH)
# res.raise_for_status()
# img = Image.open(BytesIO(res.content))
# else:
# img = Image.open(IMG_PATH)
# return img.convert("RGB")
# except Exception as e:
# raise RuntimeError(f"Failed to load image: {e}")
def _load_image(resize_to=(512, 512)):
"""
Load and resize the image from IMG_PATH.
If the image is not valid, raise an error.
"""
try:
if IMG_PATH is None:
raise ValueError("No image uploaded. Please upload an image first.")
#return "No image uploaded. Please upload an image first."
with open(IMG_PATH, "rb") as f:
img = Image.open(f)
img.verify() # Verify it's an image
img = Image.open(IMG_PATH).convert("RGB") # Reopen after verify and convert
img = img.resize(resize_to) # resize image to reduce token size
return img
except UnidentifiedImageError:
raise ValueError(f"File at {IMG_PATH} is not a valid image.")
except Exception as e:
raise ValueError(f"Failed to load image at {IMG_PATH}: {str(e)}")
def _encode_image_to_base64():
img = _load_image()
buffer = BytesIO()
img.save(buffer, format="PNG", optimize=True) # save optimized PNG
return base64.b64encode(buffer.getvalue()).decode("utf-8")
def _call_llama_llm(prompt_text: str) -> str:
b64 = _encode_image_to_base64()
message = HumanMessage(
content=[
{"type": "text", "text": prompt_text},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{b64}"
}
}
]
)
response = llm.invoke([message])
return response.content.strip()
def vision_query(task_prompt: str) -> str:
try:
return _call_llama_llm(task_prompt)
except Exception as llama_error:
print(f"[LLaMA-4V failed] {llama_error}")
try:
img = _load_image()
return pytesseract.image_to_string(img).strip()
except Exception as ocr_error:
print(f"[OCR fallback failed] {ocr_error}")
return "Unable to process the image or image is not uploaded. Please try again with a different input."
#### Create LangChain Tools ####
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββββββββββββ Assigning tools as list ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
tool_list = [
Tool(name="browse", func=web_search, description="Search the web and scrape top results. Uses DuckDuckGo (safe mode) for query. Prefers Playwright for loading pages, with requests/BeautifulSoup as fallback. Filters out any explicit content. Returns JSON with titles, URLs, and page text."),
Tool(name="calculate", func=calculate, description="Perform math calculations safely."),
Tool(name="date", func=get_current_date, description="Fetch the current date and time."),
Tool(name="sql", func=execute_sql, description="Execute SQL query on the uploaded database."),
Tool(name="rag", func=rag_answer, description="Answer questions using the uploaded documents with retrieval-augmented generation (RAG)."),
Tool(
name="vision",
func=vision_query,
description=(
"Perform any image-understanding taskβe.g. read text, classify objects, "
"generate captions, count or locate items, answer questions about the scene, "
"detect NSFW content, etc.βpowered by LLaMA 4-Vision. "
"If the request is OCR-style and LLaMA fails, it falls back to Tesseract OCR."
),
),
]
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββββββββββββ Added Memory to Agent ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1) instantiate with your LLM
memory = AutoSummaryMemory(
llm=llm,
max_entries=20, # when chat β₯20 messages, trigger summary
reduce_to=5 # keep only last 5 after summarizing
)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββββββββββββ Initialize Agent βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Initialize the agent with OpenAI and our tools. We use a zero-shot-react-description agent.
agent_executor = initialize_agent(
tools=tool_list,
llm=llm,
agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
memory=memory,
verbose=True,
handle_parsing_errors=True,
#max_iterations=10,
)
# βββ Streaming & Fallback βββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββ Streaming helper ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def run_stream(query: str, data_paths: List[str] = None):
"""
Progressive tokenβbyβtoken streaming from the agent.
Args:
query: The userβs natural-language question.
data_paths: List of file paths (DB_PATH, DOC_PATH, IMG_PATH, OTH_PATH).
"""
# If no explicit list passed, rebuild from module globals
# if not data_paths:
# data_paths = [DB_PATH, DOC_PATH, IMG_PATH, OTH_PATH]
data_paths = [p for p in data_paths if p]
print(f"Data paths----------------->: {data_paths}")
# Re-inject each into the appropriate global (optionalβkeeps them current)
for path in data_paths:
ext = os.path.splitext(path)[1].lower()
if ext in {".png", ".jpg", ".jpeg", ".gif"}:
globals()['IMG_PATH'] = path
elif ext in {".pdf", ".txt", ".doc", ".docx"}:
globals()['DOC_PATH'] = path
elif ext in {".db", ".sqlite"}:
globals()['DB_PATH'] = path
else:
globals()['OTH_PATH'] = path
# Stream the agent response
hist = get_buffer_string(memory.chat_memory.messages)
print("Memory now contains:", memory.chat_memory.messages)
for chunk in agent_executor.stream({"input": query}):
text = chunk.get("text")
if text:
yield text
# # βββ Streaming & Fallback βββββββββββββββββββββββββββββββββββββββββββββββββββββ
# def run_stream(query: str, data: str = None):
# """
# Progressive tokenβbyβtoken streaming from the agent.
# Args:
# query: The userβs natural-language question.
# data: Path to a single uploaded file (image, document, or database).
# We will inspect its extension and set the appropriate config variable:
# .png/.jpg/.jpeg/.gif β IMG_PATH
# .pdf/.txt/.doc/.docx β DOC_PATH
# .db/.sqlite β DB_PATH
# others β OTH_PATH
# """
# global DB_PATH, DOC_PATH, IMG_PATH, OTH_PATH
# # 1) If data provided, dispatch into the right config variable
# if data:
# ext = os.path.splitext(data)[1].lower()
# if ext in {".png", ".jpg", ".jpeg", ".gif"}:
# IMG_PATH = data
# print(f"Image path set to: {IMG_PATH}")
# elif ext in {".pdf", ".txt", ".doc", ".docx"}:
# DOC_PATH = data
# print(f"Document path set to: {DOC_PATH}")
# elif ext in {".db", ".sqlite"}:
# DB_PATH = data
# print(f"Database path set to: {DB_PATH}")
# else:
# OTH_PATH = data
# print(f"Other file path set to: {OTH_PATH}")
# # 2) Stream the agentβs response
# for chunk in agent_executor.stream({"input": query}):
# text = chunk.get("text")
# if text:
# yield text
def run_full(query: str) -> str:
"""
Fallback singleβshot answer (for pure-tool or final completeness).
"""
return agent_executor.run(query)
# Expose for Flask
class AgentInterface:
def __init__(self, executor):
self.executor = executor
def run_stream(self, q):
return run_stream(q)
def run_full(self, q):
return run_full(q)
agent = AgentInterface(agent_executor)
__all__ = [
'agent_executor', 'run_stream', 'run_full',
'AgentInterface', 'GLOBAL_DB_PATH', 'rag_index_document'
]
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββββββββββββββββββββ Refresh Memory Session βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Refresh Memory
def refresh_memory():
memory.clear() # clear memory at start of each new session
memory.chat_memory.clear() # clear chat history |