vumichien commited on
Commit
7c36af7
Β·
1 Parent(s): b96d288

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +4 -10
main.py CHANGED
@@ -1,6 +1,4 @@
1
  import time
2
- total_time = time.time()
3
- start_time = time.time()
4
 
5
  from ultralytics import YOLO
6
  from base64 import b64encode
@@ -9,7 +7,6 @@ import numpy as np
9
  from scipy.spatial import distance as dist
10
  from typing import Union
11
 
12
- from sahi.utils.cv import read_image_as_pil
13
  from fastapi import FastAPI, File, UploadFile
14
  from fastapi.responses import StreamingResponse
15
 
@@ -20,14 +17,10 @@ from huggingface_hub import hf_hub_download
20
 
21
  from io import BytesIO
22
  import zipfile
23
- print("Import time", time.time() - start_time)
24
- start_time = time.time()
25
 
26
  model_path = hf_hub_download(repo_id="ultralyticsplus/yolov8s", filename='yolov8s.pt')
27
  model = YOLO(model_path)
28
 
29
- print("Load model time", time.time() - start_time)
30
-
31
  CLASS = model.model.names
32
  defaul_bot_voice = "γŠγ―γ„γ‚ˆγ†γ”γ–γ„γΎγ™"
33
  area_thres = 0.3
@@ -44,17 +37,18 @@ async def predict_api(
44
  file: UploadFile = File(...),
45
  last_seen: Union[UploadFile, None] = File(None)
46
  ):
 
47
  start_time = time.time()
48
  image = read_image_file(await file.read())
49
  print("Read image", time.time() - start_time)
 
50
  results = model.predict(image, show=False)[0]
51
- image = read_image_as_pil(image)
52
  masks, boxes = results.masks, results.boxes
53
  area_image = image.width * image.height
54
  most_close = 0
55
  out_img = None
56
  diff_value = 0.5
57
- # total_time = time.time()
58
  start_time = time.time()
59
  if boxes is not None:
60
  for xyxy, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls):
@@ -65,7 +59,7 @@ async def predict_api(
65
  if area_rate >= most_close:
66
  out_img = image.crop(tuple(box)).resize((64, 64))
67
  most_close = area_rate
68
- print("Yolo time", time.time() - start_time)
69
  start_time = time.time()
70
  if last_seen is not None:
71
  last_seen = read_image_file(await last_seen.read())
 
1
  import time
 
 
2
 
3
  from ultralytics import YOLO
4
  from base64 import b64encode
 
7
  from scipy.spatial import distance as dist
8
  from typing import Union
9
 
 
10
  from fastapi import FastAPI, File, UploadFile
11
  from fastapi.responses import StreamingResponse
12
 
 
17
 
18
  from io import BytesIO
19
  import zipfile
 
 
20
 
21
  model_path = hf_hub_download(repo_id="ultralyticsplus/yolov8s", filename='yolov8s.pt')
22
  model = YOLO(model_path)
23
 
 
 
24
  CLASS = model.model.names
25
  defaul_bot_voice = "γŠγ―γ„γ‚ˆγ†γ”γ–γ„γΎγ™"
26
  area_thres = 0.3
 
37
  file: UploadFile = File(...),
38
  last_seen: Union[UploadFile, None] = File(None)
39
  ):
40
+ total_time = time.time()
41
  start_time = time.time()
42
  image = read_image_file(await file.read())
43
  print("Read image", time.time() - start_time)
44
+ start_time = time.time()
45
  results = model.predict(image, show=False)[0]
46
+ print("Model predict", time.time() - start_time)
47
  masks, boxes = results.masks, results.boxes
48
  area_image = image.width * image.height
49
  most_close = 0
50
  out_img = None
51
  diff_value = 0.5
 
52
  start_time = time.time()
53
  if boxes is not None:
54
  for xyxy, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls):
 
59
  if area_rate >= most_close:
60
  out_img = image.crop(tuple(box)).resize((64, 64))
61
  most_close = area_rate
62
+ print("Get face time", time.time() - start_time)
63
  start_time = time.time()
64
  if last_seen is not None:
65
  last_seen = read_image_file(await last_seen.read())