File size: 1,445 Bytes
553c308
 
 
 
 
8b01f23
553c308
d49628e
553c308
 
 
 
 
 
 
 
eb90129
 
 
 
 
 
 
 
 
553c308
 
 
 
 
 
 
eb90129
 
 
 
 
 
 
 
 
 
553c308
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from io import BytesIO
import base64
from PIL import Image
import cv2
import numpy as np
from gtts import gTTS

def tts(text: str, language="ja", encode=False) -> object:
    """Converts text into autoplay html.
    Args:
        text (str): generated answer of bot
        language (str): language of text
    Returns:
        html: autoplay object
    """
    tts_object = gTTS(text=text, lang=language, slow=False)
    if encode:
        bytes_object = BytesIO()
        tts_object.write_to_fp(bytes_object)
        bytes_object.seek(0)
        b64 = base64.b64encode(bytes_object.getvalue()).decode()
        return b64
    else:
        tts_object.save("temp.mp3")
        return "temp.mp3"


def read_image_file(file) -> Image.Image:
    image = Image.open(BytesIO(file))
    return image


def pil_to_base64(img, format="jpeg", encode=False):
    if encode:
        buffer = BytesIO()
        img.save(buffer, format)
        buffer.seek(0)
        return buffer
    else:
        temp_path = f"temp.{format}"
        img.save(temp_path)
        return temp_path


def base64_to_pil(img_str):
    if "base64," in img_str:
        img_str = img_str.split(",")[1]
    img_raw = base64.b64decode(img_str)
    img = Image.open(BytesIO(img_raw))
    return img


def get_hist(image):
    hist = cv2.calcHist([np.array(image)], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
    hist = cv2.normalize(hist, hist).flatten()
    return hist