|
import gradio as gr |
|
import os |
|
import openai |
|
import json |
|
import tiktoken |
|
import pandas as pd |
|
|
|
openai.api_key = os.environ["OPENAI_API_KEY"] |
|
prompt_templates = {"Default ChatGPT": ""} |
|
|
|
def num_tokens_from_messages(messages, model="gpt-3.5-turbo"): |
|
"""Returns the number of tokens used by a list of messages.""" |
|
try: |
|
encoding = tiktoken.encoding_for_model(model) |
|
except KeyError: |
|
encoding = tiktoken.get_encoding("cl100k_base") |
|
if model == "gpt-3.5-turbo": |
|
num_tokens = 0 |
|
for message in messages: |
|
num_tokens += 4 |
|
for key, value in message.items(): |
|
num_tokens += len(encoding.encode(value)) |
|
if key == "name": |
|
num_tokens += -1 |
|
num_tokens += 2 |
|
return num_tokens |
|
else: |
|
raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}. |
|
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""") |
|
|
|
|
|
def get_empty_state(): |
|
return {"total_tokens": 0, "messages": [], "threshold": 0} |
|
|
|
def download_prompt_templates(): |
|
df = pd.read_csv('prompts.csv', encoding='unicode_escape') |
|
prompt_templates.update(dict(zip(df['act'], df['prompt']))) |
|
choices = list(prompt_templates.keys()) |
|
return gr.update(value=choices[0], choices=choices) |
|
|
|
def on_token_change(user_token): |
|
openai.api_key = user_token or os.environ.get("OPENAI_API_KEY") |
|
|
|
def on_prompt_template_change(prompt_template): |
|
if not isinstance(prompt_template, str): return |
|
return prompt_templates[prompt_template] |
|
|
|
def submit_message(prompt, prompt_template, temperature, max_tokens, state): |
|
|
|
history = state['messages'] |
|
|
|
if not prompt: |
|
return gr.update(value='', visible=state['total_tokens'] < 1_000), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']} / 4090", state |
|
|
|
prompt_template = prompt_templates[prompt_template] |
|
print(prompt_template) |
|
system_prompt = [] |
|
if prompt_template: |
|
system_prompt = [{ "role": "system", "content": prompt_template}] |
|
|
|
prompt_msg = {"role": "user", "content": prompt } |
|
|
|
|
|
messages = system_prompt + history + [prompt_msg] |
|
history_id = 2 |
|
while num_tokens_from_messages(messages) >= 4090: |
|
messages = system_prompt + history[history_id:] + [prompt_msg] |
|
history_id +=2 |
|
state['threshold'] +=1 |
|
if history_id > len(history): |
|
break |
|
try: |
|
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, temperature=temperature, max_tokens=max_tokens) |
|
history.append(prompt_msg) |
|
history.append(completion.choices[0].message.to_dict()) |
|
|
|
state['total_tokens'] += completion['usage']['total_tokens'] |
|
|
|
except Exception as e: |
|
history.append(prompt_msg) |
|
history.append({ |
|
"role": "system", |
|
"content": f"Error: {e}" |
|
}) |
|
|
|
total_tokens_used_msg = f"Total tokens used: {state['total_tokens']} / 4090. " |
|
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)] |
|
|
|
if state['threshold'] >= 3: |
|
input_visibility = False |
|
total_tokens_used_msg += "Reach the limit of this conversation. Start the new one" |
|
else: |
|
input_visibility = True |
|
|
|
return gr.update(value='', visible=input_visibility), chat_messages, total_tokens_used_msg, state |
|
|
|
def clear_conversation(): |
|
return gr.update(value=None, visible=True), None, "", get_empty_state() |
|
|
|
css = """ |
|
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;} |
|
#chatbox {min-height: 400px;} |
|
#header {text-align: center;} |
|
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;} |
|
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666; height: 1em;} |
|
#label {font-size: 0.8em; padding: 0.5em; margin: 0;} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
state = gr.State(get_empty_state()) |
|
|
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("""## OpenAI ChatGPT with awesome prompts |
|
Current limit is 4090 tokens per conversation<br> |
|
Input your text with a custom insruction (If need).""", |
|
elem_id="header") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
chatbot = gr.Chatbot(elem_id="chatbox") |
|
input_message = gr.Textbox(show_label=False, placeholder="Enter text and press enter", visible=True).style(container=False) |
|
total_tokens_str = gr.Markdown(elem_id="total_tokens_str") |
|
btn_clear_conversation = gr.Button("🔃 Start New Conversation") |
|
with gr.Column(): |
|
prompt_template = gr.Dropdown(label="Set a custom insruction for the chatbot:", choices=list(prompt_templates.keys())) |
|
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview") |
|
|
|
with gr.Accordion("Advanced parameters", open=False): |
|
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, interactive=True, label="Temperature (higher = more creative/chaotic)") |
|
max_tokens = gr.Slider(minimum=100, maximum=4096, value=1000, step=1, interactive=True, label="Max tokens per response") |
|
|
|
input_message.submit(submit_message, [input_message, prompt_template, temperature, max_tokens, state], [input_message, chatbot, total_tokens_str, state]) |
|
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state]) |
|
prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview]) |
|
|
|
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template]) |
|
|
|
|
|
demo.launch(debug=True, height='800px', auth=("admin", "dtm1234")) |
|
|