Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from ultralyticsplus import YOLO
|
| 4 |
+
import numpy as np
|
| 5 |
+
from sahi.prediction import ObjectPrediction, PredictionScore
|
| 6 |
+
from sahi.utils.cv import (
|
| 7 |
+
get_bool_mask_from_coco_segmentation,
|
| 8 |
+
read_image_as_pil,
|
| 9 |
+
visualize_object_predictions,
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
from base64 import b64encode
|
| 13 |
+
from io import BytesIO
|
| 14 |
+
from gtts import gTTS
|
| 15 |
+
from mtranslate import translate
|
| 16 |
+
from speech_recognition import AudioFile, Recognizer
|
| 17 |
+
import time
|
| 18 |
+
|
| 19 |
+
model = YOLO('ultralyticsplus/yolov8s')
|
| 20 |
+
CLASS = model.model.names
|
| 21 |
+
|
| 22 |
+
def tts(text: str, language="ja") -> object:
|
| 23 |
+
"""Converts text into autoplay html.
|
| 24 |
+
Args:
|
| 25 |
+
text (str): generated answer of bot
|
| 26 |
+
Returns:
|
| 27 |
+
html: autoplay object
|
| 28 |
+
"""
|
| 29 |
+
tts_object = gTTS(text=text, lang=language, slow=False)
|
| 30 |
+
bytes_object = BytesIO()
|
| 31 |
+
tts_object.write_to_fp(bytes_object)
|
| 32 |
+
bytes_object.seek(0)
|
| 33 |
+
b64 = b64encode(bytes_object.getvalue()).decode()
|
| 34 |
+
html = f"""
|
| 35 |
+
<audio controls autoplay>
|
| 36 |
+
<source src="data:audio/wav;base64,{b64}" type="audio/wav">
|
| 37 |
+
</audio>
|
| 38 |
+
"""
|
| 39 |
+
return html
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def yolov8_inference(
|
| 43 |
+
image,
|
| 44 |
+
area_thres=0.2,
|
| 45 |
+
defaul_bot_voice="おはいようございます"
|
| 46 |
+
):
|
| 47 |
+
"""
|
| 48 |
+
YOLOv8 inference function
|
| 49 |
+
Args:
|
| 50 |
+
image: Input image
|
| 51 |
+
Returns:
|
| 52 |
+
Rendered image
|
| 53 |
+
"""
|
| 54 |
+
time.sleep(2)
|
| 55 |
+
# set model parameters
|
| 56 |
+
model.overrides['conf'] = 0.25 # NMS confidence threshold
|
| 57 |
+
model.overrides['iou'] = 0.45 # NMS IoU threshold
|
| 58 |
+
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
| 59 |
+
model.overrides['max_det'] = 1000 # maximum number of detections per image
|
| 60 |
+
results = model.predict(image, show=False)[0]
|
| 61 |
+
image = read_image_as_pil(image)
|
| 62 |
+
np_image = np.ascontiguousarray(image)
|
| 63 |
+
masks, boxes = results.masks, results.boxes
|
| 64 |
+
area_image = image.width*image.height
|
| 65 |
+
object_predictions = []
|
| 66 |
+
html_bot_voice = ""
|
| 67 |
+
if boxes is not None:
|
| 68 |
+
det_ind = 0
|
| 69 |
+
for xyxy, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls):
|
| 70 |
+
if int(cls) != 0:
|
| 71 |
+
continue
|
| 72 |
+
box = xyxy.tolist()
|
| 73 |
+
area_rate = (box[2] - box[0]) * (box[3] - box[1]) / area_image
|
| 74 |
+
|
| 75 |
+
if area_rate >= area_thres:
|
| 76 |
+
object_prediction = ObjectPrediction(
|
| 77 |
+
bbox=box,
|
| 78 |
+
category_name=CLASS[int(cls)],
|
| 79 |
+
category_id=int(cls),
|
| 80 |
+
score=area_rate,
|
| 81 |
+
)
|
| 82 |
+
object_predictions.append(object_prediction)
|
| 83 |
+
det_ind += 1
|
| 84 |
+
html_bot_voice = tts(defaul_bot_voice, language="ja")
|
| 85 |
+
|
| 86 |
+
result = visualize_object_predictions(
|
| 87 |
+
image=np_image,
|
| 88 |
+
object_prediction_list=object_predictions,
|
| 89 |
+
rect_th=2,
|
| 90 |
+
text_th=2,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
return Image.fromarray(result["image"]), html_bot_voice
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
outputs = [gr.Image(type="filepath", label="Output Image"),
|
| 97 |
+
gr.HTML()]
|
| 98 |
+
title = "State-of-the-Art YOLO Models for Object detection"
|
| 99 |
+
|
| 100 |
+
demo_app = gr.Interface(
|
| 101 |
+
fn=yolov8_inference,
|
| 102 |
+
inputs=gr.Image(source="webcam", streaming=True, label="Input Image"),
|
| 103 |
+
outputs=outputs,
|
| 104 |
+
title=title,
|
| 105 |
+
live=True,
|
| 106 |
+
)
|
| 107 |
+
demo_app.launch(debug=True)
|