import sys import os import time import math import torch import spaces # By using XTTS you agree to CPML license https://coqui.ai/cpml os.environ["COQUI_TOS_AGREED"] = "1" import gradio as gr from TTS.api import TTS from TTS.utils.manage import ModelManager model_names = TTS().list_models() print(model_names.__dict__) print(model_names.__dir__()) model_name = "tts_models/multilingual/multi-dataset/xtts_v2" m = model_name # Automatic device detection if torch.cuda.is_available(): # cuda only device_type = "cuda" device_selection = "cuda:0" data_type = torch.float16 else: # no GPU or Amd device_type = "cpu" device_selection = "cpu" data_type = torch.float32 tts = TTS(model_name, gpu=torch.cuda.is_available()) tts.to(device_type) def predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic): start = time.time() if len(prompt) < 2: gr.Warning("Please give a longer prompt text") return ( None, None, None, ) if 50000 < len(prompt): gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text") return ( None, None, None, ) if use_mic: if mic_file_path is None: gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios") return ( None, None, None, ) else: speaker_wav = mic_file_path else: speaker_wav = audio_file_pth if speaker_wav is None: if gender == "male": speaker_wav = "./examples/male.wav" else: speaker_wav = "./examples/female.wav" try: if language == "fr": if m.find("your") != -1: language = "fr-fr" if m.find("/fr/") != -1: language = None predict_on_gpu(prompt, speaker_wav, language) except RuntimeError as e : if "device-assert" in str(e): # cannot do anything on cuda device side error, need to restart gr.Warning("Unhandled Exception encounter, please retry in a minute") print("Cuda device-assert Runtime encountered need restart") sys.exit("Exit due to cuda device-assert") else: raise e end = time.time() secondes = int(end - start) minutes = math.floor(secondes / 60) secondes = secondes - (minutes * 60) hours = math.floor(minutes / 60) minutes = minutes - (hours * 60) is_randomize_seed = False information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." return ( gr.make_waveform( audio="output.wav", ), "output.wav", information, ) @spaces.GPU(duration=60) def predict_on_gpu(prompt, speaker_wav, language): tts.tts_to_file( text=prompt, file_path="output.wav", speaker_wav=speaker_wav, language=language ) with gr.Blocks() as interface: gr.HTML("Multi-language Text-to-Speech") gr.HTML( """ <a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip. <br/> XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible. <br/> This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible. <br/> Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives. <br/> <p>For faster inference without waiting in the queue, you should duplicate this space and upgrade to GPU via the settings. <br/> <a href="https://huggingface.co/spaces/coqui/xtts?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> </p> """ ) with gr.Column(): prompt = gr.Textbox( label="Text Prompt", info="One or two sentences at a time is better", value="Hello, World! Here is an example of light voice cloning. Try to upload your best audio samples quality", ) language = gr.Dropdown( label="Language", info="Select an output language for the synthesised speech", choices=[ ["Arabic", "ar"], ["Brazilian Portuguese", "pt"], ["Mandarin Chinese", "zh-cn"], ["Czech", "cs"], ["Dutch", "nl"], ["English", "en"], ["French", "fr"], ["German", "de"], ["Italian", "it"], ["Polish", "pl"], ["Russian", "ru"], ["Spanish", "es"], ["Turkish", "tr"] ], max_choices=1, value="en", ) gender = gr.Radio(["female", "male"], label="Gender", info="Gender of the voice") audio_file_pth = gr.Audio( label="Reference Audio", #info="Click on the ✎ button to upload your own target speaker audio", type="filepath", value=None, ) mic_file_path = gr.Audio(sources=["microphone"], type="filepath", #info="Use your microphone to record audio", label="Use Microphone for Reference") use_mic = gr.Checkbox(label="Check to use Microphone as Reference", value=False, info="Notice: Microphone input may not work properly under traffic",) with gr.Accordion("Advanced options", open = False): debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results") submit = gr.Button("🚀 Speak", variant = "primary") waveform_visual = gr.Video(label="Waveform Visual", autoplay=True) synthesised_audio = gr.Audio(label="Synthesised Audio", autoplay=False) information = gr.HTML() submit.click(predict, inputs = [ prompt, language, gender, audio_file_pth, mic_file_path, use_mic ], outputs = [ waveform_visual, synthesised_audio, information ], scroll_to_output = True) interface.queue().launch(debug=True)