Denliner SmilingWolf commited on
Commit
c3fca62
·
0 Parent(s):

Duplicate from SmilingWolf/wd-v1-4-tags

Browse files

Co-authored-by: Smiling Wolf <[email protected]>

Files changed (7) hide show
  1. .gitattributes +27 -0
  2. .gitignore +1 -0
  3. README.md +39 -0
  4. Utils/dbimutils.py +54 -0
  5. app.py +267 -0
  6. power.jpg +0 -0
  7. requirements.txt +5 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ images
README.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: WaifuDiffusion v1.4 Tags
3
+ emoji: 💬
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 3.16.2
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: SmilingWolf/wd-v1-4-tags
11
+ ---
12
+
13
+ # Configuration
14
+
15
+ `title`: _string_
16
+ Display title for the Space
17
+
18
+ `emoji`: _string_
19
+ Space emoji (emoji-only character allowed)
20
+
21
+ `colorFrom`: _string_
22
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
23
+
24
+ `colorTo`: _string_
25
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
26
+
27
+ `sdk`: _string_
28
+ Can be either `gradio`, `streamlit`, or `static`
29
+
30
+ `sdk_version` : _string_
31
+ Only applicable for `streamlit` SDK.
32
+ See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
33
+
34
+ `app_file`: _string_
35
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
36
+ Path is relative to the root of the repository.
37
+
38
+ `pinned`: _boolean_
39
+ Whether the Space stays on top of your list.
Utils/dbimutils.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DanBooru IMage Utility functions
2
+
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image
6
+
7
+
8
+ def smart_imread(img, flag=cv2.IMREAD_UNCHANGED):
9
+ if img.endswith(".gif"):
10
+ img = Image.open(img)
11
+ img = img.convert("RGB")
12
+ img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
13
+ else:
14
+ img = cv2.imread(img, flag)
15
+ return img
16
+
17
+
18
+ def smart_24bit(img):
19
+ if img.dtype is np.dtype(np.uint16):
20
+ img = (img / 257).astype(np.uint8)
21
+
22
+ if len(img.shape) == 2:
23
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
24
+ elif img.shape[2] == 4:
25
+ trans_mask = img[:, :, 3] == 0
26
+ img[trans_mask] = [255, 255, 255, 255]
27
+ img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
28
+ return img
29
+
30
+
31
+ def make_square(img, target_size):
32
+ old_size = img.shape[:2]
33
+ desired_size = max(old_size)
34
+ desired_size = max(desired_size, target_size)
35
+
36
+ delta_w = desired_size - old_size[1]
37
+ delta_h = desired_size - old_size[0]
38
+ top, bottom = delta_h // 2, delta_h - (delta_h // 2)
39
+ left, right = delta_w // 2, delta_w - (delta_w // 2)
40
+
41
+ color = [255, 255, 255]
42
+ new_im = cv2.copyMakeBorder(
43
+ img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
44
+ )
45
+ return new_im
46
+
47
+
48
+ def smart_resize(img, size):
49
+ # Assumes the image has already gone through make_square
50
+ if img.shape[0] > size:
51
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
52
+ elif img.shape[0] < size:
53
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
54
+ return img
app.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import argparse
4
+ import functools
5
+ import html
6
+ import os
7
+
8
+ import gradio as gr
9
+ import huggingface_hub
10
+ import numpy as np
11
+ import onnxruntime as rt
12
+ import pandas as pd
13
+ import piexif
14
+ import piexif.helper
15
+ import PIL.Image
16
+
17
+ from Utils import dbimutils
18
+
19
+ TITLE = "WaifuDiffusion v1.4 Tags"
20
+ DESCRIPTION = """
21
+ Demo for:
22
+ - [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
23
+ - [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
24
+ - [SmilingWolf/wd-v1-4-vit-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger-v2)
25
+
26
+ Includes "ready to copy" prompt and a prompt analyzer.
27
+
28
+ Modified from [NoCrypt/DeepDanbooru_string](https://huggingface.co/spaces/NoCrypt/DeepDanbooru_string)
29
+ Modified from [hysts/DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
30
+
31
+ PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
32
+
33
+ Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
34
+ """
35
+
36
+ HF_TOKEN = os.environ["HF_TOKEN"]
37
+ SWIN_MODEL_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
38
+ CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
39
+ VIT_MODEL_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
40
+ MODEL_FILENAME = "model.onnx"
41
+ LABEL_FILENAME = "selected_tags.csv"
42
+
43
+
44
+ def parse_args() -> argparse.Namespace:
45
+ parser = argparse.ArgumentParser()
46
+ parser.add_argument("--score-slider-step", type=float, default=0.05)
47
+ parser.add_argument("--score-general-threshold", type=float, default=0.35)
48
+ parser.add_argument("--score-character-threshold", type=float, default=0.85)
49
+ parser.add_argument("--share", action="store_true")
50
+ return parser.parse_args()
51
+
52
+
53
+ def load_model(model_repo: str, model_filename: str) -> rt.InferenceSession:
54
+ path = huggingface_hub.hf_hub_download(
55
+ model_repo, model_filename, use_auth_token=HF_TOKEN
56
+ )
57
+ model = rt.InferenceSession(path)
58
+ return model
59
+
60
+
61
+ def change_model(model_name):
62
+ global loaded_models
63
+
64
+ if model_name == "SwinV2":
65
+ model = load_model(SWIN_MODEL_REPO, MODEL_FILENAME)
66
+ elif model_name == "ConvNext":
67
+ model = load_model(CONV_MODEL_REPO, MODEL_FILENAME)
68
+ elif model_name == "ViT":
69
+ model = load_model(VIT_MODEL_REPO, MODEL_FILENAME)
70
+
71
+ loaded_models[model_name] = model
72
+ return loaded_models[model_name]
73
+
74
+
75
+ def load_labels() -> list[str]:
76
+ path = huggingface_hub.hf_hub_download(
77
+ SWIN_MODEL_REPO, LABEL_FILENAME, use_auth_token=HF_TOKEN
78
+ )
79
+ df = pd.read_csv(path)
80
+
81
+ tag_names = df["name"].tolist()
82
+ rating_indexes = list(np.where(df["category"] == 9)[0])
83
+ general_indexes = list(np.where(df["category"] == 0)[0])
84
+ character_indexes = list(np.where(df["category"] == 4)[0])
85
+ return tag_names, rating_indexes, general_indexes, character_indexes
86
+
87
+
88
+ def plaintext_to_html(text):
89
+ text = (
90
+ "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split("\n")]) + "</p>"
91
+ )
92
+ return text
93
+
94
+
95
+ def predict(
96
+ image: PIL.Image.Image,
97
+ model_name: str,
98
+ general_threshold: float,
99
+ character_threshold: float,
100
+ tag_names: list[str],
101
+ rating_indexes: list[np.int64],
102
+ general_indexes: list[np.int64],
103
+ character_indexes: list[np.int64],
104
+ ):
105
+ global loaded_models
106
+
107
+ rawimage = image
108
+
109
+ model = loaded_models[model_name]
110
+ if model is None:
111
+ model = change_model(model_name)
112
+
113
+ _, height, width, _ = model.get_inputs()[0].shape
114
+
115
+ # Alpha to white
116
+ image = image.convert("RGBA")
117
+ new_image = PIL.Image.new("RGBA", image.size, "WHITE")
118
+ new_image.paste(image, mask=image)
119
+ image = new_image.convert("RGB")
120
+ image = np.asarray(image)
121
+
122
+ # PIL RGB to OpenCV BGR
123
+ image = image[:, :, ::-1]
124
+
125
+ image = dbimutils.make_square(image, height)
126
+ image = dbimutils.smart_resize(image, height)
127
+ image = image.astype(np.float32)
128
+ image = np.expand_dims(image, 0)
129
+
130
+ input_name = model.get_inputs()[0].name
131
+ label_name = model.get_outputs()[0].name
132
+ probs = model.run([label_name], {input_name: image})[0]
133
+
134
+ labels = list(zip(tag_names, probs[0].astype(float)))
135
+
136
+ # First 4 labels are actually ratings: pick one with argmax
137
+ ratings_names = [labels[i] for i in rating_indexes]
138
+ rating = dict(ratings_names)
139
+
140
+ # Then we have general tags: pick any where prediction confidence > threshold
141
+ general_names = [labels[i] for i in general_indexes]
142
+ general_res = [x for x in general_names if x[1] > general_threshold]
143
+ general_res = dict(general_res)
144
+
145
+ # Everything else is characters: pick any where prediction confidence > threshold
146
+ character_names = [labels[i] for i in character_indexes]
147
+ character_res = [x for x in character_names if x[1] > character_threshold]
148
+ character_res = dict(character_res)
149
+
150
+ b = dict(sorted(general_res.items(), key=lambda item: item[1], reverse=True))
151
+ a = (
152
+ ", ".join(list(b.keys()))
153
+ .replace("_", " ")
154
+ .replace("(", "\(")
155
+ .replace(")", "\)")
156
+ )
157
+ c = ", ".join(list(b.keys()))
158
+
159
+ items = rawimage.info
160
+ geninfo = ""
161
+
162
+ if "exif" in rawimage.info:
163
+ exif = piexif.load(rawimage.info["exif"])
164
+ exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b"")
165
+ try:
166
+ exif_comment = piexif.helper.UserComment.load(exif_comment)
167
+ except ValueError:
168
+ exif_comment = exif_comment.decode("utf8", errors="ignore")
169
+
170
+ items["exif comment"] = exif_comment
171
+ geninfo = exif_comment
172
+
173
+ for field in [
174
+ "jfif",
175
+ "jfif_version",
176
+ "jfif_unit",
177
+ "jfif_density",
178
+ "dpi",
179
+ "exif",
180
+ "loop",
181
+ "background",
182
+ "timestamp",
183
+ "duration",
184
+ ]:
185
+ items.pop(field, None)
186
+
187
+ geninfo = items.get("parameters", geninfo)
188
+
189
+ info = f"""
190
+ <p><h4>PNG Info</h4></p>
191
+ """
192
+ for key, text in items.items():
193
+ info += (
194
+ f"""
195
+ <div>
196
+ <p><b>{plaintext_to_html(str(key))}</b></p>
197
+ <p>{plaintext_to_html(str(text))}</p>
198
+ </div>
199
+ """.strip()
200
+ + "\n"
201
+ )
202
+
203
+ if len(info) == 0:
204
+ message = "Nothing found in the image."
205
+ info = f"<div><p>{message}<p></div>"
206
+
207
+ return (a, c, rating, character_res, general_res, info)
208
+
209
+
210
+ def main():
211
+ global loaded_models
212
+ loaded_models = {"SwinV2": None, "ConvNext": None, "ViT": None}
213
+
214
+ args = parse_args()
215
+
216
+ change_model("SwinV2")
217
+
218
+ tag_names, rating_indexes, general_indexes, character_indexes = load_labels()
219
+
220
+ func = functools.partial(
221
+ predict,
222
+ tag_names=tag_names,
223
+ rating_indexes=rating_indexes,
224
+ general_indexes=general_indexes,
225
+ character_indexes=character_indexes,
226
+ )
227
+
228
+ gr.Interface(
229
+ fn=func,
230
+ inputs=[
231
+ gr.Image(type="pil", label="Input"),
232
+ gr.Radio(["SwinV2", "ConvNext", "ViT"], value="SwinV2", label="Model"),
233
+ gr.Slider(
234
+ 0,
235
+ 1,
236
+ step=args.score_slider_step,
237
+ value=args.score_general_threshold,
238
+ label="General Tags Threshold",
239
+ ),
240
+ gr.Slider(
241
+ 0,
242
+ 1,
243
+ step=args.score_slider_step,
244
+ value=args.score_character_threshold,
245
+ label="Character Tags Threshold",
246
+ ),
247
+ ],
248
+ outputs=[
249
+ gr.Textbox(label="Output (string)"),
250
+ gr.Textbox(label="Output (raw string)"),
251
+ gr.Label(label="Rating"),
252
+ gr.Label(label="Output (characters)"),
253
+ gr.Label(label="Output (tags)"),
254
+ gr.HTML(),
255
+ ],
256
+ examples=[["power.jpg", "SwinV2", 0.35, 0.85]],
257
+ title=TITLE,
258
+ description=DESCRIPTION,
259
+ allow_flagging="never",
260
+ ).launch(
261
+ enable_queue=True,
262
+ share=args.share,
263
+ )
264
+
265
+
266
+ if __name__ == "__main__":
267
+ main()
power.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pillow>=9.0.0
2
+ piexif>=1.1.3
3
+ onnxruntime>=1.12.0
4
+ opencv-python
5
+ huggingface-hub