Commit
·
ec595bb
1
Parent(s):
14f4ac2
Retour en arrirer sure requirements, et ses2seq
Browse files- requirements.txt +1 -0
- tabs/exploration_tab.py +1 -0
- tabs/modelisation_seq2seq_tab.py +15 -3
requirements.txt
CHANGED
|
@@ -21,6 +21,7 @@ tensorflow==2.12.0
|
|
| 21 |
sentencepiece==0.1.99
|
| 22 |
openai-whisper==20231117
|
| 23 |
torch==2.2.0
|
|
|
|
| 24 |
audio_recorder_streamlit==0.0.8
|
| 25 |
whisper==1.1.10
|
| 26 |
wavio==0.0.8
|
|
|
|
| 21 |
sentencepiece==0.1.99
|
| 22 |
openai-whisper==20231117
|
| 23 |
torch==2.2.0
|
| 24 |
+
speechrecognition==3.10.1
|
| 25 |
audio_recorder_streamlit==0.0.8
|
| 26 |
whisper==1.1.10
|
| 27 |
wavio==0.0.8
|
tabs/exploration_tab.py
CHANGED
|
@@ -7,6 +7,7 @@ from nltk import download
|
|
| 7 |
from ast import literal_eval
|
| 8 |
from translate_app import tr
|
| 9 |
if st.session_state.Cloud == 0:
|
|
|
|
| 10 |
import contextlib
|
| 11 |
import re
|
| 12 |
from nltk.corpus import stopwords
|
|
|
|
| 7 |
from ast import literal_eval
|
| 8 |
from translate_app import tr
|
| 9 |
if st.session_state.Cloud == 0:
|
| 10 |
+
# import nltk
|
| 11 |
import contextlib
|
| 12 |
import re
|
| 13 |
from nltk.corpus import stopwords
|
tabs/modelisation_seq2seq_tab.py
CHANGED
|
@@ -7,7 +7,7 @@ from transformers import pipeline
|
|
| 7 |
# from translate import Translator
|
| 8 |
from deep_translator import GoogleTranslator
|
| 9 |
from audio_recorder_streamlit import audio_recorder
|
| 10 |
-
|
| 11 |
import whisper
|
| 12 |
import io
|
| 13 |
import wavio
|
|
@@ -19,6 +19,7 @@ from tensorflow import keras
|
|
| 19 |
from keras_nlp.layers import TransformerEncoder
|
| 20 |
from tensorflow.keras import layers
|
| 21 |
from tensorflow.keras.utils import plot_model
|
|
|
|
| 22 |
from gtts import gTTS
|
| 23 |
from extra_streamlit_components import tab_bar, TabBarItemData
|
| 24 |
from translate_app import tr
|
|
@@ -488,7 +489,6 @@ def run():
|
|
| 488 |
st.write("## **"+tr("Résultats")+" :**\n")
|
| 489 |
st.audio(audio_bytes, format="audio/wav")
|
| 490 |
try:
|
| 491 |
-
# if detection:
|
| 492 |
# Create a BytesIO object from the audio stream
|
| 493 |
audio_stream_bytesio = io.BytesIO(audio_bytes)
|
| 494 |
|
|
@@ -501,16 +501,28 @@ def run():
|
|
| 501 |
# Convert the audio data to a NumPy array
|
| 502 |
audio_input = np.array(audio_data, dtype=np.float32)
|
| 503 |
audio_input = np.mean(audio_input, axis=1)/32768
|
| 504 |
-
|
|
|
|
| 505 |
result = model_speech.transcribe(audio_input)
|
| 506 |
st.write(tr("Langue détectée")+" : "+result["language"])
|
| 507 |
Lang_detected = result["language"]
|
| 508 |
# Transcription Whisper (si result a été préalablement calculé)
|
| 509 |
custom_sentence = result["text"]
|
| 510 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
Lang_detected = l_src
|
| 512 |
result = model_speech.transcribe(audio_input, language=Lang_detected)
|
| 513 |
custom_sentence = result["text"]
|
|
|
|
|
|
|
| 514 |
if custom_sentence!="":
|
| 515 |
# Lang_detected = lang_classifier (custom_sentence)[0]['label']
|
| 516 |
#st.write('Langue détectée : **'+Lang_detected+'**')
|
|
|
|
| 7 |
# from translate import Translator
|
| 8 |
from deep_translator import GoogleTranslator
|
| 9 |
from audio_recorder_streamlit import audio_recorder
|
| 10 |
+
import speech_recognition as sr
|
| 11 |
import whisper
|
| 12 |
import io
|
| 13 |
import wavio
|
|
|
|
| 19 |
from keras_nlp.layers import TransformerEncoder
|
| 20 |
from tensorflow.keras import layers
|
| 21 |
from tensorflow.keras.utils import plot_model
|
| 22 |
+
# from PIL import Image
|
| 23 |
from gtts import gTTS
|
| 24 |
from extra_streamlit_components import tab_bar, TabBarItemData
|
| 25 |
from translate_app import tr
|
|
|
|
| 489 |
st.write("## **"+tr("Résultats")+" :**\n")
|
| 490 |
st.audio(audio_bytes, format="audio/wav")
|
| 491 |
try:
|
|
|
|
| 492 |
# Create a BytesIO object from the audio stream
|
| 493 |
audio_stream_bytesio = io.BytesIO(audio_bytes)
|
| 494 |
|
|
|
|
| 501 |
# Convert the audio data to a NumPy array
|
| 502 |
audio_input = np.array(audio_data, dtype=np.float32)
|
| 503 |
audio_input = np.mean(audio_input, axis=1)/32768
|
| 504 |
+
|
| 505 |
+
if detection:
|
| 506 |
result = model_speech.transcribe(audio_input)
|
| 507 |
st.write(tr("Langue détectée")+" : "+result["language"])
|
| 508 |
Lang_detected = result["language"]
|
| 509 |
# Transcription Whisper (si result a été préalablement calculé)
|
| 510 |
custom_sentence = result["text"]
|
| 511 |
else:
|
| 512 |
+
# Avec l'aide de la bibliothèque speech_recognition de Google
|
| 513 |
+
Lang_detected = l_src
|
| 514 |
+
# Transcription google
|
| 515 |
+
audio_stream = sr.AudioData(audio_bytes, 32000, 2)
|
| 516 |
+
r = sr.Recognizer()
|
| 517 |
+
custom_sentence = r.recognize_google(audio_stream, language = Lang_detected)
|
| 518 |
+
|
| 519 |
+
# Sans la bibliothèque speech_recognition, uniquement avec Whisper
|
| 520 |
+
'''
|
| 521 |
Lang_detected = l_src
|
| 522 |
result = model_speech.transcribe(audio_input, language=Lang_detected)
|
| 523 |
custom_sentence = result["text"]
|
| 524 |
+
'''
|
| 525 |
+
|
| 526 |
if custom_sentence!="":
|
| 527 |
# Lang_detected = lang_classifier (custom_sentence)[0]['label']
|
| 528 |
#st.write('Langue détectée : **'+Lang_detected+'**')
|