import gradio as gr import os import torch import io from pyannote.audio import Pipeline from pyannote.audio import Audio from pyannote.audio.pipelines.utils.hook import TimingHook from pyannote.core import Segment pipeline = Pipeline.from_pretrained( "pyannote/speaker-diarization-3.1", use_auth_token=os.environ['api']) def process_audio(audio): # Use the diarization pipeline to process the audio diarization = diarization_pipeline(audio) # Optionally, you can write the diarization output to disk using RTTM format # with open("audio.rttm", "w") as rttm: # diarization.write_rttm(rttm) # Return the diarization output return diarization with gr.Blocks() as demo: audio_input = gr.Audio(label="Upload Audio", source="upload") process_button = gr.Button("Process") diarization_output = gr.JSON(label="Diarization Output") process_button.click(fn=process_audio, inputs=audio_input, outputs=diarization_output) demo.launch()