Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,10 @@ import os
|
|
3 |
import torch
|
4 |
import io
|
5 |
import wavio
|
|
|
6 |
from pyannote.audio import Pipeline
|
7 |
from pyannote.audio import Audio
|
8 |
from pyannote.core import Segment
|
9 |
-
import numpy as np
|
10 |
|
11 |
pipeline = Pipeline.from_pretrained(
|
12 |
"pyannote/speaker-diarization-3.1",
|
@@ -20,7 +20,7 @@ def process_audio(audio):
|
|
20 |
audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767)
|
21 |
|
22 |
# Save the uploaded audio file to a temporary location
|
23 |
-
wavio.write("temp.wav", audio_data, sample_rate, sampwidth=2)
|
24 |
|
25 |
# Use the diarization pipeline to process the audio
|
26 |
diarization = pipeline("temp.wav")
|
|
|
3 |
import torch
|
4 |
import io
|
5 |
import wavio
|
6 |
+
import numpy as np
|
7 |
from pyannote.audio import Pipeline
|
8 |
from pyannote.audio import Audio
|
9 |
from pyannote.core import Segment
|
|
|
10 |
|
11 |
pipeline = Pipeline.from_pretrained(
|
12 |
"pyannote/speaker-diarization-3.1",
|
|
|
20 |
audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767)
|
21 |
|
22 |
# Save the uploaded audio file to a temporary location
|
23 |
+
wavio.write("temp.wav", audio_data[:, np.newaxis], sample_rate, sampwidth=2)
|
24 |
|
25 |
# Use the diarization pipeline to process the audio
|
26 |
diarization = pipeline("temp.wav")
|