Delik's picture
Update app.py
8289149 verified
raw
history blame
929 Bytes
import gradio as gr
import os
import torch
import io
from pyannote.audio import Pipeline
from pyannote.audio import Audio
from pyannote.core import Segment
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.environ['api'])
def process_audio(audio):
# Save the uploaded audio file to a temporary location
with open("temp.wav", "wb") as f:
f.write(audio)
# Use the diarization pipeline to process the audio
diarization = pipeline("temp.wav")
# Remove the temporary file
os.remove("temp.wav")
# Return the diarization output
return diarization
with gr.Blocks() as demo:
audio_input = gr.Audio(label="Upload Audio")
process_button = gr.Button("Process")
diarization_output = gr.JSON(label="Diarization Output")
process_button.click(fn=process_audio, inputs=audio_input, outputs=diarization_output)
demo.launch()