Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import os | |
import torch | |
import io | |
from pyannote.audio import Pipeline | |
from pyannote.audio import Audio | |
from pyannote.audio.pipelines.utils.hook import TimingHook | |
from pyannote.core import Segment | |
pipeline = Pipeline.from_pretrained( | |
"pyannote/speaker-diarization-3.1", | |
use_auth_token=os.environ['api']) | |
def process_audio(audio_file): | |
# Save the uploaded audio file to a temporary location | |
temp_file = "temp_audio.wav" | |
with open(temp_file, "wb") as f: | |
f.write(audio_file.read()) | |
# Use the diarization pipeline to process the audio file | |
diarization = pipeline(temp_file) | |
# Remove the temporary file | |
os.remove(temp_file) | |
# Return the diarization output | |
return diarization | |
with gr.Blocks() as demo: | |
audio_input = gr.File(label="Upload Audio", file_types=["audio"]) | |
process_button = gr.Button("Process") | |
diarization_output = gr.JSON(label="Diarization Output") | |
process_button.click(fn=process_audio, inputs=audio_input, outputs=diarization_output) | |
demo.launch() |