Delik's picture
Update app.py
2129f6b verified
raw
history blame
776 Bytes
import gradio as gr
import os
import torch
import io
from pyannote.audio import Pipeline
from pyannote.audio import Audio
from pyannote.audio.pipelines.utils.hook import TimingHook
from pyannote.core import Segment
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.environ['api'])
#def process_audio(audio):
# Your audio processing logic goes here
# For demonstration purposes, we'll just return the input audio
return audio
#with gr.Blocks() as demo:
audio_input = gr.Audio(label="Upload Audio", source="upload")
process_button = gr.Button("Process")
audio_output = gr.Audio(label="Processed Audio")
process_button.click(fn=process_audio, inputs=audio_input, outputs=audio_output)
demo.launch()