Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,890 Bytes
090acab f30c373 7c9216a 18e78ec ba685bf aad12fa fc03567 1c57ed2 108b343 ce1f6bf fc03567 aad12fa 76efec6 0d076a1 aad12fa 0d076a1 8289149 fc03567 ce1f6bf fc03567 0d076a1 76efec6 8289149 0d076a1 db1ee1f aad12fa 1429210 db1ee1f ff42726 ce1f6bf 2129f6b 0d076a1 1429210 ce1f6bf 2129f6b 0d076a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import spaces
import gradio as gr
import os
from pyannote.audio import Pipeline
# instantiate the pipeline
try:
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.environ["api"]
)
except Exception as e:
print(f"Error initializing pipeline: {e}")
pipeline = None
@spaces.GPU
def process_audio(audio, num_speakers, min_speakers, max_speakers):
if pipeline is None:
return "Error: Pipeline not initialized"
# Read the uploaded audio file
with open(audio, "rb") as f:
audio_data = f.read()
# Save the uploaded audio file to a temporary location
with open("temp.wav", "wb") as f:
f.write(audio_data)
# Use the diarization pipeline to process the audio
try:
params = {}
if num_speakers > 0:
params["num_speakers"] = num_speakers
if min_speakers > 0:
params["min_speakers"] = min_speakers
if max_speakers > 0:
params["max_speakers"] = max_speakers
diarization = pipeline("temp.wav", **params)
except Exception as e:
return f"Error processing audio: {e}"
# Remove the temporary file
os.remove("temp.wav")
# Return the diarization output
return str(diarization)
with gr.Blocks() as demo:
audio_input = gr.Audio(type="filepath", label="Upload Audio")
num_speakers_input = gr.Number(label="Number of Speakers", value=0)
min_speakers_input = gr.Number(label="Minimum Number of Speakers", value=0)
max_speakers_input = gr.Number(label="Maximum Number of Speakers", value=0)
process_button = gr.Button("Process")
diarization_output = gr.Textbox(label="Diarization Output")
process_button.click(fn=process_audio, inputs=[audio_input, num_speakers_input, min_speakers_input, max_speakers_input], outputs=diarization_output)
demo.launch() |