Spaces:
Running
on
Zero
Running
on
Zero
File size: 983 Bytes
f30c373 7c9216a 18e78ec ba685bf aad12fa 1c57ed2 76a53fa 1c57ed2 8289149 aad12fa 76efec6 0d076a1 aad12fa 0d076a1 8289149 0d076a1 76efec6 8289149 0d076a1 db1ee1f aad12fa 1429210 db1ee1f ff42726 2129f6b 0d076a1 1429210 db1ee1f 2129f6b 0d076a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
import os
from pyannote.audio import Pipeline
# instantiate the pipeline
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.environ["api"])
def process_audio(audio):
# Read the uploaded audio file
with open(audio, "rb") as f:
audio_data = f.read()
# Save the uploaded audio file to a temporary location
with open("temp.wav", "wb") as f:
f.write(audio_data)
# Use the diarization pipeline to process the audio
diarization = pipeline("temp.wav")
# Remove the temporary file
os.remove("temp.wav")
# Return the diarization output
return str(diarization)
with gr.Blocks() as demo:
audio_input = gr.Audio(type="filepath", label="Upload Audio")
process_button = gr.Button("Process")
diarization_output = gr.Textbox(label="Diarization Output")
process_button.click(fn=process_audio, inputs=audio_input, outputs=diarization_output)
demo.launch() |