Spaces:
Runtime error
Runtime error
| import math | |
| from abc import abstractmethod | |
| from dataclasses import dataclass | |
| from numbers import Number | |
| import torch as th | |
| import torch.nn.functional as F | |
| from choices import * | |
| from config_base import BaseConfig | |
| from torch import nn | |
| from .nn import (avg_pool_nd, conv_nd, linear, normalization, | |
| timestep_embedding, torch_checkpoint, zero_module) | |
| class ScaleAt(Enum): | |
| after_norm = 'afternorm' | |
| class TimestepBlock(nn.Module): | |
| """ | |
| Any module where forward() takes timestep embeddings as a second argument. | |
| """ | |
| def forward(self, x, emb=None, cond=None, lateral=None): | |
| """ | |
| Apply the module to `x` given `emb` timestep embeddings. | |
| """ | |
| class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
| """ | |
| A sequential module that passes timestep embeddings to the children that | |
| support it as an extra input. | |
| """ | |
| def forward(self, x, emb=None, cond=None, lateral=None): | |
| for layer in self: | |
| if isinstance(layer, TimestepBlock): | |
| x = layer(x, emb=emb, cond=cond, lateral=lateral) | |
| else: | |
| x = layer(x) | |
| return x | |
| class ResBlockConfig(BaseConfig): | |
| channels: int | |
| emb_channels: int | |
| dropout: float | |
| out_channels: int = None | |
| # condition the resblock with time (and encoder's output) | |
| use_condition: bool = True | |
| # whether to use 3x3 conv for skip path when the channels aren't matched | |
| use_conv: bool = False | |
| # dimension of conv (always 2 = 2d) | |
| dims: int = 2 | |
| # gradient checkpoint | |
| use_checkpoint: bool = False | |
| up: bool = False | |
| down: bool = False | |
| # whether to condition with both time & encoder's output | |
| two_cond: bool = False | |
| # number of encoders' output channels | |
| cond_emb_channels: int = None | |
| # suggest: False | |
| has_lateral: bool = False | |
| lateral_channels: int = None | |
| # whether to init the convolution with zero weights | |
| # this is default from BeatGANs and seems to help learning | |
| use_zero_module: bool = True | |
| def __post_init__(self): | |
| self.out_channels = self.out_channels or self.channels | |
| self.cond_emb_channels = self.cond_emb_channels or self.emb_channels | |
| def make_model(self): | |
| return ResBlock(self) | |
| class ResBlock(TimestepBlock): | |
| """ | |
| A residual block that can optionally change the number of channels. | |
| total layers: | |
| in_layers | |
| - norm | |
| - act | |
| - conv | |
| out_layers | |
| - norm | |
| - (modulation) | |
| - act | |
| - conv | |
| """ | |
| def __init__(self, conf: ResBlockConfig): | |
| super().__init__() | |
| self.conf = conf | |
| ############################# | |
| # IN LAYERS | |
| ############################# | |
| assert conf.lateral_channels is None | |
| layers = [ | |
| normalization(conf.channels), | |
| nn.SiLU(), | |
| conv_nd(conf.dims, conf.channels, conf.out_channels, 3, padding=1) | |
| ] | |
| self.in_layers = nn.Sequential(*layers) | |
| self.updown = conf.up or conf.down | |
| if conf.up: | |
| self.h_upd = Upsample(conf.channels, False, conf.dims) | |
| self.x_upd = Upsample(conf.channels, False, conf.dims) | |
| elif conf.down: | |
| self.h_upd = Downsample(conf.channels, False, conf.dims) | |
| self.x_upd = Downsample(conf.channels, False, conf.dims) | |
| else: | |
| self.h_upd = self.x_upd = nn.Identity() | |
| ############################# | |
| # OUT LAYERS CONDITIONS | |
| ############################# | |
| if conf.use_condition: | |
| # condition layers for the out_layers | |
| self.emb_layers = nn.Sequential( | |
| nn.SiLU(), | |
| linear(conf.emb_channels, 2 * conf.out_channels), | |
| ) | |
| if conf.two_cond: | |
| self.cond_emb_layers = nn.Sequential( | |
| nn.SiLU(), | |
| linear(conf.cond_emb_channels, conf.out_channels), | |
| ) | |
| ############################# | |
| # OUT LAYERS (ignored when there is no condition) | |
| ############################# | |
| # original version | |
| conv = conv_nd(conf.dims, | |
| conf.out_channels, | |
| conf.out_channels, | |
| 3, | |
| padding=1) | |
| if conf.use_zero_module: | |
| # zere out the weights | |
| # it seems to help training | |
| conv = zero_module(conv) | |
| # construct the layers | |
| # - norm | |
| # - (modulation) | |
| # - act | |
| # - dropout | |
| # - conv | |
| layers = [] | |
| layers += [ | |
| normalization(conf.out_channels), | |
| nn.SiLU(), | |
| nn.Dropout(p=conf.dropout), | |
| conv, | |
| ] | |
| self.out_layers = nn.Sequential(*layers) | |
| ############################# | |
| # SKIP LAYERS | |
| ############################# | |
| if conf.out_channels == conf.channels: | |
| # cannot be used with gatedconv, also gatedconv is alsways used as the first block | |
| self.skip_connection = nn.Identity() | |
| else: | |
| if conf.use_conv: | |
| kernel_size = 3 | |
| padding = 1 | |
| else: | |
| kernel_size = 1 | |
| padding = 0 | |
| self.skip_connection = conv_nd(conf.dims, | |
| conf.channels, | |
| conf.out_channels, | |
| kernel_size, | |
| padding=padding) | |
| def forward(self, x, emb=None, cond=None, lateral=None): | |
| """ | |
| Apply the block to a Tensor, conditioned on a timestep embedding. | |
| Args: | |
| x: input | |
| lateral: lateral connection from the encoder | |
| """ | |
| return torch_checkpoint(self._forward, (x, emb, cond, lateral), | |
| self.conf.use_checkpoint) | |
| def _forward( | |
| self, | |
| x, | |
| emb=None, | |
| cond=None, | |
| lateral=None, | |
| ): | |
| """ | |
| Args: | |
| lateral: required if "has_lateral" and non-gated, with gated, it can be supplied optionally | |
| """ | |
| if self.conf.has_lateral: | |
| # lateral may be supplied even if it doesn't require | |
| # the model will take the lateral only if "has_lateral" | |
| assert lateral is not None | |
| x = th.cat([x, lateral], dim=1) | |
| if self.updown: | |
| in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
| h = in_rest(x) | |
| h = self.h_upd(h) | |
| x = self.x_upd(x) | |
| h = in_conv(h) | |
| else: | |
| h = self.in_layers(x) | |
| if self.conf.use_condition: | |
| # it's possible that the network may not receieve the time emb | |
| # this happens with autoenc and setting the time_at | |
| if emb is not None: | |
| emb_out = self.emb_layers(emb).type(h.dtype) | |
| else: | |
| emb_out = None | |
| if self.conf.two_cond: | |
| # it's possible that the network is two_cond | |
| # but it doesn't get the second condition | |
| # in which case, we ignore the second condition | |
| # and treat as if the network has one condition | |
| if cond is None: | |
| cond_out = None | |
| else: | |
| cond_out = self.cond_emb_layers(cond).type(h.dtype) | |
| if cond_out is not None: | |
| while len(cond_out.shape) < len(h.shape): | |
| cond_out = cond_out[..., None] | |
| else: | |
| cond_out = None | |
| # this is the new refactored code | |
| h = apply_conditions( | |
| h=h, | |
| emb=emb_out, | |
| cond=cond_out, | |
| layers=self.out_layers, | |
| scale_bias=1, | |
| in_channels=self.conf.out_channels, | |
| up_down_layer=None, | |
| ) | |
| return self.skip_connection(x) + h | |
| def apply_conditions( | |
| h, | |
| emb=None, | |
| cond=None, | |
| layers: nn.Sequential = None, | |
| scale_bias: float = 1, | |
| in_channels: int = 512, | |
| up_down_layer: nn.Module = None, | |
| ): | |
| """ | |
| apply conditions on the feature maps | |
| Args: | |
| emb: time conditional (ready to scale + shift) | |
| cond: encoder's conditional (read to scale + shift) | |
| """ | |
| two_cond = emb is not None and cond is not None | |
| if emb is not None: | |
| # adjusting shapes | |
| while len(emb.shape) < len(h.shape): | |
| emb = emb[..., None] | |
| if two_cond: | |
| # adjusting shapes | |
| while len(cond.shape) < len(h.shape): | |
| cond = cond[..., None] | |
| # time first | |
| scale_shifts = [emb, cond] | |
| else: | |
| # "cond" is not used with single cond mode | |
| scale_shifts = [emb] | |
| # support scale, shift or shift only | |
| for i, each in enumerate(scale_shifts): | |
| if each is None: | |
| # special case: the condition is not provided | |
| a = None | |
| b = None | |
| else: | |
| if each.shape[1] == in_channels * 2: | |
| a, b = th.chunk(each, 2, dim=1) | |
| else: | |
| a = each | |
| b = None | |
| scale_shifts[i] = (a, b) | |
| # condition scale bias could be a list | |
| if isinstance(scale_bias, Number): | |
| biases = [scale_bias] * len(scale_shifts) | |
| else: | |
| # a list | |
| biases = scale_bias | |
| # default, the scale & shift are applied after the group norm but BEFORE SiLU | |
| pre_layers, post_layers = layers[0], layers[1:] | |
| # spilt the post layer to be able to scale up or down before conv | |
| # post layers will contain only the conv | |
| mid_layers, post_layers = post_layers[:-2], post_layers[-2:] | |
| h = pre_layers(h) | |
| # scale and shift for each condition | |
| for i, (scale, shift) in enumerate(scale_shifts): | |
| # if scale is None, it indicates that the condition is not provided | |
| if scale is not None: | |
| h = h * (biases[i] + scale) | |
| if shift is not None: | |
| h = h + shift | |
| h = mid_layers(h) | |
| # upscale or downscale if any just before the last conv | |
| if up_down_layer is not None: | |
| h = up_down_layer(h) | |
| h = post_layers(h) | |
| return h | |
| class Upsample(nn.Module): | |
| """ | |
| An upsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| upsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| if use_conv: | |
| self.conv = conv_nd(dims, | |
| self.channels, | |
| self.out_channels, | |
| 3, | |
| padding=1) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| if self.dims == 3: | |
| x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), | |
| mode="nearest") | |
| else: | |
| x = F.interpolate(x, scale_factor=2, mode="nearest") | |
| if self.use_conv: | |
| x = self.conv(x) | |
| return x | |
| class Downsample(nn.Module): | |
| """ | |
| A downsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| downsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| stride = 2 if dims != 3 else (1, 2, 2) | |
| if use_conv: | |
| self.op = conv_nd(dims, | |
| self.channels, | |
| self.out_channels, | |
| 3, | |
| stride=stride, | |
| padding=1) | |
| else: | |
| assert self.channels == self.out_channels | |
| self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| return self.op(x) | |
| class AttentionBlock(nn.Module): | |
| """ | |
| An attention block that allows spatial positions to attend to each other. | |
| Originally ported from here, but adapted to the N-d case. | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
| """ | |
| def __init__( | |
| self, | |
| channels, | |
| num_heads=1, | |
| num_head_channels=-1, | |
| use_checkpoint=False, | |
| use_new_attention_order=False, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| if num_head_channels == -1: | |
| self.num_heads = num_heads | |
| else: | |
| assert ( | |
| channels % num_head_channels == 0 | |
| ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" | |
| self.num_heads = channels // num_head_channels | |
| self.use_checkpoint = use_checkpoint | |
| self.norm = normalization(channels) | |
| self.qkv = conv_nd(1, channels, channels * 3, 1) | |
| if use_new_attention_order: | |
| # split qkv before split heads | |
| self.attention = QKVAttention(self.num_heads) | |
| else: | |
| # split heads before split qkv | |
| self.attention = QKVAttentionLegacy(self.num_heads) | |
| self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) | |
| def forward(self, x): | |
| return torch_checkpoint(self._forward, (x, ), self.use_checkpoint) | |
| def _forward(self, x): | |
| b, c, *spatial = x.shape | |
| x = x.reshape(b, c, -1) | |
| qkv = self.qkv(self.norm(x)) | |
| h = self.attention(qkv) | |
| h = self.proj_out(h) | |
| return (x + h).reshape(b, c, *spatial) | |
| def count_flops_attn(model, _x, y): | |
| """ | |
| A counter for the `thop` package to count the operations in an | |
| attention operation. | |
| Meant to be used like: | |
| macs, params = thop.profile( | |
| model, | |
| inputs=(inputs, timestamps), | |
| custom_ops={QKVAttention: QKVAttention.count_flops}, | |
| ) | |
| """ | |
| b, c, *spatial = y[0].shape | |
| num_spatial = int(np.prod(spatial)) | |
| # We perform two matmuls with the same number of ops. | |
| # The first computes the weight matrix, the second computes | |
| # the combination of the value vectors. | |
| matmul_ops = 2 * b * (num_spatial**2) * c | |
| model.total_ops += th.DoubleTensor([matmul_ops]) | |
| class QKVAttentionLegacy(nn.Module): | |
| """ | |
| A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping | |
| """ | |
| def __init__(self, n_heads): | |
| super().__init__() | |
| self.n_heads = n_heads | |
| def forward(self, qkv): | |
| """ | |
| Apply QKV attention. | |
| :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. | |
| :return: an [N x (H * C) x T] tensor after attention. | |
| """ | |
| bs, width, length = qkv.shape | |
| assert width % (3 * self.n_heads) == 0 | |
| ch = width // (3 * self.n_heads) | |
| q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, | |
| dim=1) | |
| scale = 1 / math.sqrt(math.sqrt(ch)) | |
| weight = th.einsum( | |
| "bct,bcs->bts", q * scale, | |
| k * scale) # More stable with f16 than dividing afterwards | |
| weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| a = th.einsum("bts,bcs->bct", weight, v) | |
| return a.reshape(bs, -1, length) | |
| def count_flops(model, _x, y): | |
| return count_flops_attn(model, _x, y) | |
| class QKVAttention(nn.Module): | |
| """ | |
| A module which performs QKV attention and splits in a different order. | |
| """ | |
| def __init__(self, n_heads): | |
| super().__init__() | |
| self.n_heads = n_heads | |
| def forward(self, qkv): | |
| """ | |
| Apply QKV attention. | |
| :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. | |
| :return: an [N x (H * C) x T] tensor after attention. | |
| """ | |
| bs, width, length = qkv.shape | |
| assert width % (3 * self.n_heads) == 0 | |
| ch = width // (3 * self.n_heads) | |
| q, k, v = qkv.chunk(3, dim=1) | |
| scale = 1 / math.sqrt(math.sqrt(ch)) | |
| weight = th.einsum( | |
| "bct,bcs->bts", | |
| (q * scale).view(bs * self.n_heads, ch, length), | |
| (k * scale).view(bs * self.n_heads, ch, length), | |
| ) # More stable with f16 than dividing afterwards | |
| weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| a = th.einsum("bts,bcs->bct", weight, | |
| v.reshape(bs * self.n_heads, ch, length)) | |
| return a.reshape(bs, -1, length) | |
| def count_flops(model, _x, y): | |
| return count_flops_attn(model, _x, y) | |
| class AttentionPool2d(nn.Module): | |
| """ | |
| Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py | |
| """ | |
| def __init__( | |
| self, | |
| spacial_dim: int, | |
| embed_dim: int, | |
| num_heads_channels: int, | |
| output_dim: int = None, | |
| ): | |
| super().__init__() | |
| self.positional_embedding = nn.Parameter( | |
| th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5) | |
| self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) | |
| self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) | |
| self.num_heads = embed_dim // num_heads_channels | |
| self.attention = QKVAttention(self.num_heads) | |
| def forward(self, x): | |
| b, c, *_spatial = x.shape | |
| x = x.reshape(b, c, -1) # NC(HW) | |
| x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) | |
| x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) | |
| x = self.qkv_proj(x) | |
| x = self.attention(x) | |
| x = self.c_proj(x) | |
| return x[:, :, 0] | |