Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| from torch.nn import functional as F | |
| from torch import nn | |
| def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): | |
| return F.leaky_relu(input + bias, negative_slope) * scale | |
| class FusedLeakyReLU(nn.Module): | |
| def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): | |
| super().__init__() | |
| self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) | |
| self.negative_slope = negative_slope | |
| self.scale = scale | |
| def forward(self, input): | |
| # print("FusedLeakyReLU: ", input.abs().mean()) | |
| out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) | |
| # print("FusedLeakyReLU: ", out.abs().mean()) | |
| return out | |
| def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): | |
| _, minor, in_h, in_w = input.shape | |
| kernel_h, kernel_w = kernel.shape | |
| out = input.view(-1, minor, in_h, 1, in_w, 1) | |
| out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) | |
| out = out.view(-1, minor, in_h * up_y, in_w * up_x) | |
| out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) | |
| out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] | |
| # out = out.permute(0, 3, 1, 2) | |
| out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) | |
| w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) | |
| out = F.conv2d(out, w) | |
| out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, | |
| in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) | |
| # out = out.permute(0, 2, 3, 1) | |
| return out[:, :, ::down_y, ::down_x] | |
| def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): | |
| return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) | |
| def make_kernel(k): | |
| k = torch.tensor(k, dtype=torch.float32) | |
| if k.ndim == 1: | |
| k = k[None, :] * k[:, None] | |
| k /= k.sum() | |
| return k | |
| class Blur(nn.Module): | |
| def __init__(self, kernel, pad, upsample_factor=1): | |
| super().__init__() | |
| kernel = make_kernel(kernel) | |
| if upsample_factor > 1: | |
| kernel = kernel * (upsample_factor ** 2) | |
| self.register_buffer('kernel', kernel) | |
| self.pad = pad | |
| def forward(self, input): | |
| return upfirdn2d(input, self.kernel, pad=self.pad) | |
| class ScaledLeakyReLU(nn.Module): | |
| def __init__(self, negative_slope=0.2): | |
| super().__init__() | |
| self.negative_slope = negative_slope | |
| def forward(self, input): | |
| return F.leaky_relu(input, negative_slope=self.negative_slope) | |
| class EqualConv2d(nn.Module): | |
| def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) | |
| self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
| self.stride = stride | |
| self.padding = padding | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(out_channel)) | |
| else: | |
| self.bias = None | |
| def forward(self, input): | |
| return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, | |
| padding=self.padding, ) | |
| def __repr__(self): | |
| return ( | |
| f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' | |
| f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' | |
| ) | |
| class EqualLinear(nn.Module): | |
| def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
| else: | |
| self.bias = None | |
| self.activation = activation | |
| self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
| self.lr_mul = lr_mul | |
| def forward(self, input): | |
| if self.activation: | |
| out = F.linear(input, self.weight * self.scale) | |
| out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
| else: | |
| out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) | |
| return out | |
| def __repr__(self): | |
| return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') | |
| class ConvLayer(nn.Sequential): | |
| def __init__( | |
| self, | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| downsample=False, | |
| blur_kernel=[1, 3, 3, 1], | |
| bias=True, | |
| activate=True, | |
| ): | |
| layers = [] | |
| if downsample: | |
| factor = 2 | |
| p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
| pad0 = (p + 1) // 2 | |
| pad1 = p // 2 | |
| layers.append(Blur(blur_kernel, pad=(pad0, pad1))) | |
| stride = 2 | |
| self.padding = 0 | |
| else: | |
| stride = 1 | |
| self.padding = kernel_size // 2 | |
| layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, | |
| bias=bias and not activate)) | |
| if activate: | |
| if bias: | |
| layers.append(FusedLeakyReLU(out_channel)) | |
| else: | |
| layers.append(ScaledLeakyReLU(0.2)) | |
| super().__init__(*layers) | |
| class ResBlock(nn.Module): | |
| def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
| self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) | |
| self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False) | |
| def forward(self, input): | |
| out = self.conv1(input) | |
| out = self.conv2(out) | |
| skip = self.skip(input) | |
| out = (out + skip) / math.sqrt(2) | |
| return out | |
| class Discriminator(nn.Module): | |
| def __init__(self, size, channel_multiplier=1, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.size = size | |
| channels = { | |
| 4: 512, | |
| 8: 512, | |
| 16: 512, | |
| 32: 512, | |
| 64: 256 * channel_multiplier, | |
| 128: 128 * channel_multiplier, | |
| 256: 64 * channel_multiplier, | |
| 512: 32 * channel_multiplier, | |
| 1024: 16 * channel_multiplier, | |
| } | |
| convs = [ConvLayer(3, channels[size], 1)] | |
| log_size = int(math.log(size, 2)) | |
| in_channel = channels[size] | |
| for i in range(log_size, 2, -1): | |
| out_channel = channels[2 ** (i - 1)] | |
| convs.append(ResBlock(in_channel, out_channel, blur_kernel)) | |
| in_channel = out_channel | |
| self.convs = nn.Sequential(*convs) | |
| self.stddev_group = 4 | |
| self.stddev_feat = 1 | |
| self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) | |
| self.final_linear = nn.Sequential( | |
| EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), | |
| EqualLinear(channels[4], 1), | |
| ) | |
| def forward(self, input): | |
| out = self.convs(input) | |
| batch, channel, height, width = out.shape | |
| group = min(batch, self.stddev_group) | |
| stddev = out.view(group, -1, self.stddev_feat, channel // self.stddev_feat, height, width) | |
| stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) | |
| stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) | |
| stddev = stddev.repeat(group, 1, height, width) | |
| out = torch.cat([out, stddev], 1) | |
| out = self.final_conv(out) | |
| out = out.view(batch, -1) | |
| out = self.final_linear(out) | |
| return out | |