Spaces:
Runtime error
Runtime error
| from enum import Enum | |
| from torch import nn | |
| class TrainMode(Enum): | |
| # manipulate mode = training the classifier | |
| manipulate = 'manipulate' | |
| # default trainin mode! | |
| diffusion = 'diffusion' | |
| # default latent training mode! | |
| # fitting the a DDPM to a given latent | |
| latent_diffusion = 'latentdiffusion' | |
| def is_manipulate(self): | |
| return self in [ | |
| TrainMode.manipulate, | |
| ] | |
| def is_diffusion(self): | |
| return self in [ | |
| TrainMode.diffusion, | |
| TrainMode.latent_diffusion, | |
| ] | |
| def is_autoenc(self): | |
| # the network possibly does autoencoding | |
| return self in [ | |
| TrainMode.diffusion, | |
| ] | |
| def is_latent_diffusion(self): | |
| return self in [ | |
| TrainMode.latent_diffusion, | |
| ] | |
| def use_latent_net(self): | |
| return self.is_latent_diffusion() | |
| def require_dataset_infer(self): | |
| """ | |
| whether training in this mode requires the latent variables to be available? | |
| """ | |
| # this will precalculate all the latents before hand | |
| # and the dataset will be all the predicted latents | |
| return self in [ | |
| TrainMode.latent_diffusion, | |
| TrainMode.manipulate, | |
| ] | |
| class ManipulateMode(Enum): | |
| """ | |
| how to train the classifier to manipulate | |
| """ | |
| # train on whole celeba attr dataset | |
| celebahq_all = 'celebahq_all' | |
| # celeba with D2C's crop | |
| d2c_fewshot = 'd2cfewshot' | |
| d2c_fewshot_allneg = 'd2cfewshotallneg' | |
| def is_celeba_attr(self): | |
| return self in [ | |
| ManipulateMode.d2c_fewshot, | |
| ManipulateMode.d2c_fewshot_allneg, | |
| ManipulateMode.celebahq_all, | |
| ] | |
| def is_single_class(self): | |
| return self in [ | |
| ManipulateMode.d2c_fewshot, | |
| ManipulateMode.d2c_fewshot_allneg, | |
| ] | |
| def is_fewshot(self): | |
| return self in [ | |
| ManipulateMode.d2c_fewshot, | |
| ManipulateMode.d2c_fewshot_allneg, | |
| ] | |
| def is_fewshot_allneg(self): | |
| return self in [ | |
| ManipulateMode.d2c_fewshot_allneg, | |
| ] | |
| class ModelType(Enum): | |
| """ | |
| Kinds of the backbone models | |
| """ | |
| # unconditional ddpm | |
| ddpm = 'ddpm' | |
| # autoencoding ddpm cannot do unconditional generation | |
| autoencoder = 'autoencoder' | |
| def has_autoenc(self): | |
| return self in [ | |
| ModelType.autoencoder, | |
| ] | |
| def can_sample(self): | |
| return self in [ModelType.ddpm] | |
| class ModelName(Enum): | |
| """ | |
| List of all supported model classes | |
| """ | |
| beatgans_ddpm = 'beatgans_ddpm' | |
| beatgans_autoenc = 'beatgans_autoenc' | |
| class ModelMeanType(Enum): | |
| """ | |
| Which type of output the model predicts. | |
| """ | |
| eps = 'eps' # the model predicts epsilon | |
| class ModelVarType(Enum): | |
| """ | |
| What is used as the model's output variance. | |
| The LEARNED_RANGE option has been added to allow the model to predict | |
| values between FIXED_SMALL and FIXED_LARGE, making its job easier. | |
| """ | |
| # posterior beta_t | |
| fixed_small = 'fixed_small' | |
| # beta_t | |
| fixed_large = 'fixed_large' | |
| class LossType(Enum): | |
| mse = 'mse' # use raw MSE loss (and KL when learning variances) | |
| l1 = 'l1' | |
| class GenerativeType(Enum): | |
| """ | |
| How's a sample generated | |
| """ | |
| ddpm = 'ddpm' | |
| ddim = 'ddim' | |
| class OptimizerType(Enum): | |
| adam = 'adam' | |
| adamw = 'adamw' | |
| class Activation(Enum): | |
| none = 'none' | |
| relu = 'relu' | |
| lrelu = 'lrelu' | |
| silu = 'silu' | |
| tanh = 'tanh' | |
| def get_act(self): | |
| if self == Activation.none: | |
| return nn.Identity() | |
| elif self == Activation.relu: | |
| return nn.ReLU() | |
| elif self == Activation.lrelu: | |
| return nn.LeakyReLU(negative_slope=0.2) | |
| elif self == Activation.silu: | |
| return nn.SiLU() | |
| elif self == Activation.tanh: | |
| return nn.Tanh() | |
| else: | |
| raise NotImplementedError() | |
| class ManipulateLossType(Enum): | |
| bce = 'bce' | |
| mse = 'mse' |