Spaces:
Runtime error
Runtime error
| from LIA_Model import LIA_Model | |
| import torch | |
| import numpy as np | |
| import os | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import argparse | |
| import numpy as np | |
| from torchvision import transforms | |
| from templates import * | |
| import argparse | |
| import shutil | |
| from moviepy.editor import * | |
| import librosa | |
| import python_speech_features | |
| import importlib.util | |
| import time | |
| def check_package_installed(package_name): | |
| package_spec = importlib.util.find_spec(package_name) | |
| if package_spec is None: | |
| print(f"{package_name} is not installed.") | |
| return False | |
| else: | |
| print(f"{package_name} is installed.") | |
| return True | |
| def frames_to_video(input_path, audio_path, output_path, fps=25): | |
| image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))] | |
| clips = [ImageClip(m).set_duration(1/fps) for m in image_files] | |
| video = concatenate_videoclips(clips, method="compose") | |
| audio = AudioFileClip(audio_path) | |
| final_video = video.set_audio(audio) | |
| final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac') | |
| def load_image(filename, size): | |
| img = Image.open(filename).convert('RGB') | |
| img = img.resize((size, size)) | |
| img = np.asarray(img) | |
| img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256 | |
| return img / 255.0 | |
| def img_preprocessing(img_path, size): | |
| img = load_image(img_path, size) # [0, 1] | |
| img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1] | |
| imgs_norm = (img - 0.5) * 2.0 # [-1, 1] | |
| return imgs_norm | |
| def saved_image(img_tensor, img_path): | |
| toPIL = transforms.ToPILImage() | |
| img = toPIL(img_tensor.detach().cpu().squeeze(0)) # 使用squeeze(0)来移除批次维度 | |
| img.save(img_path) | |
| def main(args): | |
| frames_result_saved_path = os.path.join(args.result_path, 'frames') | |
| os.makedirs(frames_result_saved_path, exist_ok=True) | |
| test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0] | |
| audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0] | |
| predicted_video_256_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}.mp4') | |
| predicted_video_512_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}_SR.mp4') | |
| #======Loading Stage 1 model========= | |
| lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum') | |
| lia.load_lightning_model(args.stage1_checkpoint_path) | |
| lia.to(args.device) | |
| #============================ | |
| conf = ffhq256_autoenc() | |
| conf.seed = args.seed | |
| conf.decoder_layers = args.decoder_layers | |
| conf.infer_type = args.infer_type | |
| conf.motion_dim = args.motion_dim | |
| if args.infer_type == 'mfcc_full_control': | |
| conf.face_location=True | |
| conf.face_scale=True | |
| conf.mfcc = True | |
| elif args.infer_type == 'mfcc_pose_only': | |
| conf.face_location=False | |
| conf.face_scale=False | |
| conf.mfcc = True | |
| elif args.infer_type == 'hubert_pose_only': | |
| conf.face_location=False | |
| conf.face_scale=False | |
| conf.mfcc = False | |
| elif args.infer_type == 'hubert_audio_only': | |
| conf.face_location=False | |
| conf.face_scale=False | |
| conf.mfcc = False | |
| elif args.infer_type == 'hubert_full_control': | |
| conf.face_location=True | |
| conf.face_scale=True | |
| conf.mfcc = False | |
| else: | |
| print('Type NOT Found!') | |
| exit(0) | |
| if not os.path.exists(args.test_image_path): | |
| print(f'{args.test_image_path} does not exist!') | |
| exit(0) | |
| if not os.path.exists(args.test_audio_path): | |
| print(f'{args.test_audio_path} does not exist!') | |
| exit(0) | |
| img_source = img_preprocessing(args.test_image_path, args.image_size).to(args.device) | |
| one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source) | |
| #======Loading Stage 2 model========= | |
| model = LitModel(conf) | |
| state = torch.load(args.stage2_checkpoint_path, map_location='cpu') | |
| model.load_state_dict(state, strict=True) | |
| model.ema_model.eval() | |
| model.ema_model.to(args.device); | |
| #================================= | |
| #======Audio Input========= | |
| if conf.infer_type.startswith('mfcc'): | |
| # MFCC features | |
| wav, sr = librosa.load(args.test_audio_path, sr=16000) | |
| input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01) | |
| d_mfcc_feat = python_speech_features.base.delta(input_values, 1) | |
| d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2) | |
| audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2)) | |
| frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4) | |
| audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) # The video frame is fixed to 25 hz and the audio is fixed to 100 hz | |
| audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to(args.device) | |
| elif conf.infer_type.startswith('hubert'): | |
| # Hubert features | |
| if not os.path.exists(args.test_hubert_path): | |
| if not check_package_installed('transformers'): | |
| print('Please install transformers module first.') | |
| exit(0) | |
| hubert_model_path = 'ckpts/chinese-hubert-large' | |
| if not os.path.exists(hubert_model_path): | |
| print('Please download the hubert weight into the ckpts path first.') | |
| exit(0) | |
| print('You did not extract the audio features in advance, extracting online now, which will increase processing delay') | |
| start_time = time.time() | |
| # load hubert model | |
| from transformers import Wav2Vec2FeatureExtractor, HubertModel | |
| audio_model = HubertModel.from_pretrained(hubert_model_path).to(args.device) | |
| feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path) | |
| audio_model.feature_extractor._freeze_parameters() | |
| audio_model.eval() | |
| # hubert model forward pass | |
| audio, sr = librosa.load(args.test_audio_path, sr=16000) | |
| input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values | |
| input_values = input_values.to(args.device) | |
| ws_feats = [] | |
| with torch.no_grad(): | |
| outputs = audio_model(input_values, output_hidden_states=True) | |
| for i in range(len(outputs.hidden_states)): | |
| ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy()) | |
| ws_feat_obj = np.array(ws_feats) | |
| ws_feat_obj = np.squeeze(ws_feat_obj, 1) | |
| ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') # align the audio length with video frame | |
| execution_time = time.time() - start_time | |
| print(f"Extraction Audio Feature: {execution_time:.2f} Seconds") | |
| audio_driven_obj = ws_feat_obj | |
| else: | |
| print(f'Using audio feature from path: {args.test_hubert_path}') | |
| audio_driven_obj = np.load(args.test_hubert_path) | |
| frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2) | |
| audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) # The video frame is fixed to 25 hz and the audio is fixed to 50 hz | |
| audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to(args.device) | |
| #============================ | |
| # Diffusion Noise | |
| noisyT = th.randn((1,frame_end, args.motion_dim)).to(args.device) | |
| #======Inputs for Attribute Control========= | |
| if os.path.exists(args.pose_driven_path): | |
| pose_obj = np.load(args.pose_driven_path) | |
| if len(pose_obj.shape) != 2: | |
| print('please check your pose information. The shape must be like (T, 3).') | |
| exit(0) | |
| if pose_obj.shape[1] != 3: | |
| print('please check your pose information. The shape must be like (T, 3).') | |
| exit(0) | |
| if pose_obj.shape[0] >= frame_end: | |
| pose_obj = pose_obj[:frame_end,:] | |
| else: | |
| padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1)) | |
| pose_obj = np.vstack((pose_obj, padding)) | |
| pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to(args.device) / 90 # 90 is for normalization here | |
| else: | |
| yaw_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_yaw | |
| pitch_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_pitch | |
| roll_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_roll | |
| pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1) | |
| pose_signal = torch.clamp(pose_signal, -1, 1) | |
| face_location_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_location | |
| face_scae_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_scale | |
| #=========================================== | |
| start_time = time.time() | |
| #======Diffusion Denosing Process========= | |
| generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag) | |
| #========================================= | |
| execution_time = time.time() - start_time | |
| print(f"Motion Diffusion Model: {execution_time:.2f} Seconds") | |
| generated_directions = generated_directions.detach().cpu().numpy() | |
| start_time = time.time() | |
| #======Rendering images frame-by-frame========= | |
| for pred_index in tqdm(range(generated_directions.shape[1])): | |
| ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to(args.device), feats) | |
| ori_img_recon = ori_img_recon.clamp(-1, 1) | |
| wav_pred = (ori_img_recon.detach() + 1) / 2 | |
| saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index))) | |
| #============================================== | |
| execution_time = time.time() - start_time | |
| print(f"Renderer Model: {execution_time:.2f} Seconds") | |
| frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path) | |
| shutil.rmtree(frames_result_saved_path) | |
| # Enhancer | |
| # Code is modified from https://github.com/OpenTalker/SadTalker/blob/cd4c0465ae0b54a6f85af57f5c65fec9fe23e7f8/src/utils/face_enhancer.py#L26 | |
| if args.face_sr and check_package_installed('gfpgan'): | |
| from face_sr.face_enhancer import enhancer_list | |
| import imageio | |
| # Super-resolution | |
| imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25)) | |
| # Merge audio and video | |
| video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4') | |
| audio_clip = AudioFileClip(predicted_video_256_path) | |
| final_clip = video_clip.set_audio(audio_clip) | |
| final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac') | |
| os.remove(predicted_video_512_path+'.tmp.mp4') | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--infer_type', type=str, default='mfcc_pose_only', help='mfcc_pose_only or mfcc_full_control') | |
| parser.add_argument('--test_image_path', type=str, default='./test_demos/portraits/monalisa.jpg', help='Path to the portrait') | |
| parser.add_argument('--test_audio_path', type=str, default='./test_demos/audios/english_female.wav', help='Path to the driven audio') | |
| parser.add_argument('--test_hubert_path', type=str, default='./test_demos/audios_hubert/english_female.npy', help='Path to the driven audio(hubert type). Not needed for MFCC') | |
| parser.add_argument('--result_path', type=str, default='./results/', help='Type of inference') | |
| parser.add_argument('--stage1_checkpoint_path', type=str, default='./ckpts/stage1.ckpt', help='Path to the checkpoint of Stage1') | |
| parser.add_argument('--stage2_checkpoint_path', type=str, default='./ckpts/pose_only.ckpt', help='Path to the checkpoint of Stage2') | |
| parser.add_argument('--seed', type=int, default=0, help='seed for generations') | |
| parser.add_argument('--control_flag', action='store_true', help='Whether to use control signal or not') | |
| parser.add_argument('--pose_yaw', type=float, default=0.25, help='range from -1 to 1 (-90 ~ 90 angles)') | |
| parser.add_argument('--pose_pitch', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)') | |
| parser.add_argument('--pose_roll', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)') | |
| parser.add_argument('--face_location', type=float, default=0.5, help='range from 0 to 1 (from left to right)') | |
| parser.add_argument('--pose_driven_path', type=str, default='xxx', help='path to pose numpy, shape is (T, 3). You can check the following code https://github.com/liutaocode/talking_face_preprocessing to extract the yaw, pitch and roll.') | |
| parser.add_argument('--face_scale', type=float, default=0.5, help='range from 0 to 1 (from small to large)') | |
| parser.add_argument('--step_T', type=int, default=50, help='Step T for diffusion denoising process') | |
| parser.add_argument('--image_size', type=int, default=256, help='Size of the image. Do not change.') | |
| parser.add_argument('--device', type=str, default='cuda:0', help='Device for computation') | |
| parser.add_argument('--motion_dim', type=int, default=20, help='Dimension of motion. Do not change.') | |
| parser.add_argument('--decoder_layers', type=int, default=2, help='Layer number for the conformer.') | |
| parser.add_argument('--face_sr', action='store_true', help='Face super-resolution (Optional). Please install GFPGAN first') | |
| args = parser.parse_args() | |
| main(args) |