Spaces:
Running
on
Zero
Running
on
Zero
| # from https://github.com/bebebe666/OptimalSteps | |
| import numpy as np | |
| import torch | |
| def loglinear_interp(t_steps, num_steps): | |
| """ | |
| Performs log-linear interpolation of a given array of decreasing numbers. | |
| """ | |
| xs = np.linspace(0, 1, len(t_steps)) | |
| ys = np.log(t_steps[::-1]) | |
| new_xs = np.linspace(0, 1, num_steps) | |
| new_ys = np.interp(new_xs, xs, ys) | |
| interped_ys = np.exp(new_ys)[::-1].copy() | |
| return interped_ys | |
| NOISE_LEVELS = {"FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001], | |
| "Wan":[1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001], | |
| } | |
| class OptimalStepsScheduler: | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| {"model_type": (["FLUX", "Wan"], ), | |
| "steps": ("INT", {"default": 20, "min": 3, "max": 1000}), | |
| "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
| } | |
| } | |
| RETURN_TYPES = ("SIGMAS",) | |
| CATEGORY = "sampling/custom_sampling/schedulers" | |
| FUNCTION = "get_sigmas" | |
| def get_sigmas(self, model_type, steps, denoise): | |
| total_steps = steps | |
| if denoise < 1.0: | |
| if denoise <= 0.0: | |
| return (torch.FloatTensor([]),) | |
| total_steps = round(steps * denoise) | |
| sigmas = NOISE_LEVELS[model_type][:] | |
| if (steps + 1) != len(sigmas): | |
| sigmas = loglinear_interp(sigmas, steps + 1) | |
| sigmas = sigmas[-(total_steps + 1):] | |
| sigmas[-1] = 0 | |
| return (torch.FloatTensor(sigmas), ) | |
| NODE_CLASS_MAPPINGS = { | |
| "OptimalStepsScheduler": OptimalStepsScheduler, | |
| } | |